Stannous chloride induced alteration in hormones : protective role of ginseng
FULL TEXT PDF

Keywords

Stannous chloride
ginseng
hormones and rabbits

Abstract

Roughly 50% of the world generation of tin is utilized for plating. Tin coatings are utilized for nourishment_ holders and nourishment- preparing hardware. Ginseng, which may be a plant having diverse species has been well examined, particularly the ginseng, and has been detailed to have antioxidant properties, improve safe work.. This work explored the defensive impacts of ginseng against stannous chloride (SnCl2) on hormones in rabbits. Results indicated that treatment with ginseng alone caused significant (P<0.05) increase in body weight (BW) and relative weight of testes compared to control animals. On the other hand, significant (P<0.05) decrease in BW and relative weight of testes in rabbits treated with SnCl2 compared with control. Treatment with SnCl2 caused significant (P<0.05) decrease activity of testosterone, T3 and T4. While, increase the levels of FSH, LH, estradiol and progesterone in plasma. ginseng caused significant (P<0.05) increase in the activity testosterone, T3 and T4. While, decrease the levels of FSH, LH, estradiol and progesterone in plasma compared to control. The presence of ginseng with SnCl2 caused significant (P<0.05) decrease in the reduction of testosterone ,T3 and T4 as compared to control and the presence of ginseng with SnCl2 caused increase in the levels of estradiol , progesterone, FSH and LH as compared to control, and this means that ginseng counteracted the toxic effects of SnCl2.

FULL TEXT PDF

References

[1]. REYNOLDS, A. S., PIERRE, T. H., MCCALL, R., WU, J. & GATO, W. E. 2018. Evaluating the cytotoxicity of tin dioxide nanofibers. Journal of Environmental Science and Health, Part A, 53, 986-991.
[2]. GALLO, A. 2018. Toxicity of marine pollutants on the ascidian oocyte physiology: An electrophysiological approach. Zygote, 26, 14-23.
[3]. BENOWITZ, N. L. 1990. Clinical pharmacology of caffeine. Annual review of medicine, 41, 277-288.
[4]. RIBEIRO, A., LEITE, P., FALAGAN-LOTSCH, P., BENETTI, F., MICHELETTI, C., BUDTZ, H., JACOBSEN, N., LISBOA-FILHO, P., ROCHA, L. & KUHNEL, D. 2017. Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact, 8, 59-72.
[5]. RIBEIRO, A. R., MUKHERJEE, A., HU, X., SHAFIEN, S., GHODSI, R., HE, K., GEMINI-PIPERNI, S., WANG, C., KLIE, R. F. & SHOKUHFAR, T. 2017. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy. Nanoscale, 9, 10684-10693.
[6]. WESTER, P., CANTON, J., VAN IERSEL, A., KRAJNC, E. & VAESSEN, H. 1990. The toxicity of bis (tri-n-butyltin) oxide (TBTO) and di-n-butyltindichloride (DBTC) in the small fish species Oryzias latipes (medaka) and Poecilia reticulata (guppy). Aquatic toxicology, 16, 53-72.
[7]. TENNEKES, H., HORST, K., LUETKEMEIER, H., VOGEL, W., VOGEL, O., SCHLOTKE, B., EHLERS, H., MULLER, E. & TERRIER, C. 1989. TPTH‐technical (Code: HOE 02 9664 OF ZD 970007) chronic toxicity/oncogenicity 104‐week feeding study in rats. Unpublished report, 46980.
[8]. HARAZONO, A. & EMA, M. 2003. Suppression of decidual cell response induced by dibutyltindichloride in pseudopregnant rats: as a cause of early embryonic loss. Reproductive Toxicology, 17, 393-399.
[9]. MCVEY, M. J. & COOKE, G. M. 2003. Inhibition of rat testis microsomal 3β-hydroxysteroid dehydrogenase activity by tributyltin. The Journal of Steroid Biochemistry and Molecular Biology, 86, 99-105.
[10]. MAKITA, Y., NAKAO, M., OGASAWARA, N. & NAKAI, K. 2004. DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids Research, 32, D75-D77
[11]. KIM, J. Y., PARK, J. H., LEE, J. J., HUH, Y., LEE, S. B., HAN, S. K., CHOI, S. W., LEE, D. Y., KIM, K. W. & WOO, J. I. 2008. Standardization of the Korean version of the geriatric depression scale: reliability, validity, and factor structure. Psychiatry investigation, 5, 232.
[12]. ATTELE, A. S., WU, J. A. & YUAN, C.-S. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochemical pharmacology, 58, 1685-1693.
[13]. KIM, S., PARK, K., CHANG, M. & SUNG, J. 2005. Effects of Panax ginseng extract on exercise-induced oxidative stress. Journal of Sports Medicine and Physical Fitness, 45, 178-182.
[14]. SANDRONI, P. 2001. Aphrodisiacs past and present: a historical review. Clinical Autonomic Research, 11, 303-307.
[15]. OREMOSU, A., AROWOSAYE, V., AKANG, E. & BASSEY, R. 2013. Effects of Cissus populnea and Panax ginseng on flutamide-induced testicular defect in pre-pubertal male rats. Journal of Advances in Medicine and Medical Research, 173-181.
[16]. FAHIM, M., FAHIM, Z., HARMAN, J., CLEVENGER, T., MULLINS, W. & HAFEZ, E. 1982. Effect of Panax ginseng on testosterone level and prostate in male rats. Archives of andrology, 8, 261-263.
[17]. SABA, A. B., ORIDUPA, O. A., OYEYEMI, M. O. & OSANYIGBE, O. D. 2009. Spermatozoa morphology and characteristics of male wistar rats administered with ethanolic extract of Lagenaria Breviflora Roberts. African Journal of Biotechnology, 8.
[18]. IWUJI, T., HERBERT, U. & OGUIKE, M. 2018. Effect of Panax Ginseng Extracts on Milk Yield of New Zealand White Rabbits. 43rd Annual Conference of the Nigerian Society for Animal Production, FUT Owerri. 152-154.
[19]. LEUNG, K. W. & WONG, A. S. 2013. Ginseng and male reproductive function. Spermatogenesis, 3, e26391.
[20]. IWUJI, T., UZOR, V., KADURUMBA, O., OKERE, P. & EGENUKA, F. 2020. Reproductive characteristics of adult rabbit bucks fed diets containing Dialium guineense leaf meal. Nigerian Journal of Animal Science, 22, 98-105.
[21]. KAMAL, M., ARIF, M. & JAWAID, T. 2017. Adaptogenic medicinal plants utilized for strengthening the power of resistance during chemotherapy–a review. Oriental Pharmacy and Experimental Medicine, 17, 1-18.
[22]. ORGANIZATION, W. H. 1980. Tin and Organotin Compounds: A Preliminary Review-Environmental Health Criteria 15.
[23]. YOUSEF, M. I. 2005. Protective role of ascorbic acid to enhance reproductive performance of male rabbits treated with stannous chloride. Toxicology, 207, 81-89.
[24]. BEYNEN, A., PEKELHARING, H. & LEMMENS, A. (1992). High intakes of tin lower iron status in rats. Biological trace element research, 35, 85-88.
[25]. YU, S. & BEYNEN, A. C. 1995. High tin intake reduces copper status in rats through inhibition of copper absorption. British journal of nutrition, 73, 863 869.
[26]. OMURA, M., OGATA, R., KUBO, K., SHIMASAKI, Y., AOU, S., OSHIMA, Y., TANAKA, A., HIRATA, M., MAKITA, Y. & INOUE, N. 2001. Two-generation reproductive toxicity study of tributyltin chloride in male rats. Toxicological Sciences, 64, 224-232
[27]. DE GROOT, A., FERON, V. & TIL, H. 1973. Short-term toxicity studies on some salts and oxides of tin in rats. Food and cosmetics toxicology, 11, 19-30.
[28]. NDOR, L., OWEN, O. & NYECHE, V. 2010. Influence of housing systems on the performance and reproductive characteristics of wearner rabbits reared in Port Harcourt, Rivers State, Nigeria. International Journal Of Agriculture and Biology, 12, 947-949.
[29]. JANG, H., KIM, H., CHO, J., CHEN, Y., YOO, J., MIN, B., PARK, J. & KIM, I. 2007. Effects of dietary supplementation of fermented wild-ginseng culture by-products on egg productivity, egg quality, blood characteristics and ginsenoside concentration of yolk in laying hens. Korean Journal of Poultry Science, 34, 271-278.
[30]. RABIE, M., SZILAGYI, M., GIPPERT, T., VOTISKY, E. & GERENDAI, D. 1997. Influence of dietary L-carnitine on performance and carcass quality of broiler chickens. Acta Biologica Hungarica, 48, 241-252.
[31]. RABIE, M. H. & SZILáGYI, M. 1998. Effects of L-carnitine supplementation of diets differing in energy levels on performance, abdominal fat content, and yield and composition of edible meat of broilers. British Journal of Nutrition, 80, 391-400.
[32]. IBRAHIM, A., SOUFANI, K., POUTZIOURIS, P. & LAM, J. 2004. Qualities of an effective successor: the role of education and training. Education+ Training.
[33]. IBRAHIM, S. A. 2005. Effect of some medicinal plants as feed additives on growth and some metabolic changes in rabbits. Egypt J. Nutr. Feeds, 8, 207-19.
[34]. CHOI, K. T. (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacologica Sinica, 29, 1109-1118.
[35]. YıLDıRıM, A. & ERENER, G. 2010. The possibilities using of Ginseng (Panax spp.) in poultry nutrition. Hasad J. Anim. Sci, 26, 56-59.
[36]. GLICK, B. 1977. The bursa of Fabricius and immunoglobulin synthesis. International review of cytology. Elsevier
[37]. DONG, X., GAO, W., TONG, J., JIA, H., SA, R. & ZHANG, Q. 2007. Effect of polysavone (alfalfa extract) on abdominal fat deposition and immunity in broiler chickens. Poultry science, 86, 1955-1959.
[38]. HARAZONO, A., EMA, M. & OGAWA, Y. 1996. Pre-implantation embryonic loss induced by tributyltin chloride in rats. Toxicology letters, 89, 185-190.
[39]. ADEEKO, A., LI, D., FORSYTH, D. S., CASEY, V., COOKE, G. M., BARTHELEMY, J., CYR, D. G., TRASLER, J. M., ROBAIRE, B. & HALES, B. F. 2003. Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicological Sciences, 74, 407-415.
[40]. EMA, M. & MIYAWAKI, E. 2002. Effects on development of the reproductive system in male offspring of rats given butyl benzyl phthalate during late pregnancy. Reproductive Toxicology, 16, 71-76
[41]. EMA, M., HIROTA, K., MIMURA, J., ABE, H., YODOI, J., SOGAWA, K., POELLINGER, L. & FUJII‐KURIYAMA, Y. 1999. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal‐induced interaction with CBP/p300. The EMBO journal, 18, 1905-1914.
[42]. EMA, M., HARAZONO, A., HIROSE, A. & KAMATA, E. 2003. Protective effects of progesterone on implantation failure induced by dibutyltin dichloride in rats. Toxicology letters, 143, 233-238.
[43]. CRISP, T. M., CLEGG, E. D., COOPER, R. L., WOOD, W. P., ANDERSON, D. G., BAETCKE, K. P., HOFFMANN, J. L., MORROW, M. S., RODIER, D. J. & SCHAEFFER, J. E. 1998. Environmental endocrine disruption: an effects assessment and analysis. Environmental health perspectives, 106, 11-56.
[44]. DASTON, G. P., GOOCH, J. W., BRESLIN, W. J., SHUEY, D. L., NIKIFOROV, A. I., FICO, T. A. & GORSUCH, J. W. 1997. Environmental estrogens and reproductive health: a discussion of the human and environmental data. Reproductive Toxicology, 11, 465-481.
[45]. YIN, J., ZHANG, H. & YE, J. 2008. Traditional Chinese medicine in treatment of metabolic syndrome. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 8, 99-111.
[46]. MIZUMAKI, Y., KURIMOTO, M., HIRASHIMA, Y., NISHIJIMA, M., KAMIYAMA, H., NAGAI, S., TAKAKU, A., SUGIHARA, K., SHIMIZU, M. & ENDO, S. 2002. Lipophilic fraction of Panax ginseng induces neuronal differentiation of PC12 cells and promotes neuronal survival of rat cortical neurons by protein kinase C dependent manner. Brain research, 950, 254-260.
[47]. PARK, H. J., KIM, D. H., PARK, S. J., KIM, J. M. & RYU, J. H. 2012. Ginseng in traditional herbal prescriptions. Journal of ginseng research, 36, 225.
[48]. DAI, X., ZHOU, Y. & YU, X. 1999. Effect of ginseng injection in treating congestive heart failure and its influence on thyroid hormones. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine, 19, 209-211.
[49]. MANNAA, F., ABDEL‐WAHHAB, M. A., AHMED, H. H. & PARK, M. H. (2006). Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide‐induced neurotoxicity in rats. Journal of Applied Toxicology: An International Journal, 26, 198-206.
[50]. CRUNKHORN, S. & PATTI, M.-E. 2008. Links between thyroid hormone action, oxidative metabolism, and diabetes risk? Thyroid, 18, 227-237.
[51]. PEPPA, M., BETSI, G. & DIMITRIADIS, G. 2011. Lipid abnormalities and cardiometabolic risk in patients with overt and subclinical thyroid disease. Journal of lipids, 2011.
[52]. MURPHY, L. L. & LEE, T. J. F. 2002. Ginseng, sex behavior, and nitric oxide. Annals of the New York Academy of Sciences, 962, 372-377.
[53]. AKINGBEMI, B. T., SOTTAS, C. M., KOULOVA, A. I., KLINEFELTER, G. R. & HARDY, M. P. 2004. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology, 145, 592-603.
[54]. TSAI, S.-C., CHIAO, Y.-C., LU, C.-C. & WANG, P. S. 2003. Stimulation of the secretion of luteinizing hormone by ginsenoside-Rb1 in male rats. Chinese Journal of Physiology, 46, 1-8.
[55]. KHALED, F. A., ALI, M. S. & AIL, A. M. 2018. Beneficent Effect of Ginseng on Semen Characteristics in Treated Bisphenol A Adult Rabbits. Quest Journals, Journal of Research in Pharmaceutical Science, 4, 54-58.
[56]. SHI, J., XUE, W., ZHAO, W.-J. & LI, K.-X. 2013. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats. Acta Pharmacologica Sinica, 34, 214-220.
Copyright (c) 2021 IJO - International Journal of Applied Science