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Abstract

This paper analyzes the local stability of a cholera transmission model of SIRB type

(Susceptible–Infected–Recovered–Bacteria), incorporating vaccination and treatment.

The disease-free equilibrium (DFE) and endemic equilibrium (EE) were derived,

and their stability was investigated using the Jacobian matrix and Routh–Hurwitz

criteria. Results show that the DFE is locally asymptotically stable when R0 < 1,

ensuring disease elimination, while for R0 > 1 the DFE becomes unstable and the

system converges to a stable EE. A numerical example with biologically realistic pa-

rameters confirmed the theoretical findings. The study concludes that reducing R0

below unity through vaccination and improved sanitation is essential for sustainable

cholera control.

Keywords: Cholera; SIRB model; Equilibrium stability; Vaccination; Reproduction

number; Epidemiological modeling

1 Introduction

Cholera continues to be one of the most persistent waterborne diseases, disproportionately

affecting populations in regions with poor sanitation, inadequate access to clean water,

and fragile health systems. The World Health Organization (2019) estimates millions

of cases annually, with recurrent epidemics posing significant socio-economic burdens in

sub-Saharan Africa and South Asia. The disease is caused by Vibrio cholerae, which
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transmits both directly through contaminated water and food and indirectly via environ-

mental reservoirs. These dual transmission pathways make cholera dynamics particularly

challenging to analyze and control (Codeço, 2001; Hartley et al., 2006). Mathematical

models have become indispensable tools in epidemiology, allowing researchers to explore

transmission dynamics, evaluate interventions, and identify critical thresholds for dis-

ease persistence or eradication (Anderson and May, 1991; Brauer and Castillo-Chavez,

2012). The susceptible–infectious–recovered (SIR) framework, introduced by Kermack

and McKendrick (1927), laid the foundation for modeling epidemics, but cholera requires

an extension to account for environmental bacterial concentrations. This motivated the

development of SIRB models, which explicitly incorporate a bacterial reservoir and thus

capture the ecological persistence of Vibrio cholerae (Capasso and Paveri-Fontana, 1979;

Codeço, 2001). In cholera modeling, two mathematical concepts are central: the equi-

librium points of the system and the basic reproduction number, R0. The disease-free

equilibrium describes conditions under which cholera can be eradicated, while the en-

demic equilibrium represents sustained disease presence. The threshold nature of R0,

formalized through the next-generation matrix method (Driessche and Watmough, 2002),

distinguishes between elimination (R0 < 1) and persistence (R0 > 1). Yet, understanding

whether these equilibria are locally stable is equally critical, since stability determines

whether small perturbations—such as imported infections—die out or trigger sustained

outbreaks (Hethcote, 2000). Recent work has emphasized integrating vaccination and

treatment into cholera models. For instance, Onuorah et al. (2022) formulated a variable-

population cholera model with vaccination, highlighting the importance of immunization

in long-term control. Similarly, Edward and Nyerere (2015) introduced a model with

treatment and control measures, showing that medical interventions significantly alter

equilibrium stability. These studies underscore that beyond identifying equilibria and

thresholds, analyzing their stability under intervention scenarios is indispensable for ef-

fective policymaking.

The application of mathematical modeling in infectious disease dynamics has a long tra-

dition, with early milestones including the work of Kermack and McKendrick (1927),
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who introduced the classical SIR model. This model established the conceptual frame-

work for understanding epidemic thresholds and herd immunity. Anderson and May

(1991) later expanded this perspective in Infectious Diseases of Humans, emphasizing

the role of reproduction numbers and control strategies across diverse diseases. In the

context of cholera, Capasso and Paveri-Fontana (1979) provided one of the first models

that incorporated waterborne transmission, analyzing the 1973 Mediterranean epidemic.

Codeço (2001) further advanced cholera modeling by explicitly including bacterial reser-

voirs, leading to the widely used SIRB framework. This was complemented by Hartley

et al. (2006), who introduced the concept of hyperinfectivity, showing how environmen-

tal amplification of Vibrio cholerae shapes epidemic waves. The concept of the basic

reproduction number, R0, and its role in threshold analysis was rigorously formalized by

Driessche and Watmough (2002), whose next-generation matrix approach remains a stan-

dard in epidemiological modeling. Wang and Zhao (2004, 2008) extended these results to

heterogeneous and periodic environments, providing insights into more complex settings.

Hethcote (2000) provided a general review of the mathematics of infectious diseases,

reinforcing the centrality of equilibrium analysis. Modern cholera models have incor-

porated interventions such as vaccination, treatment, and sanitation. Mukandavire and

Liao (2011) modeled vaccination impacts, while Mukandavire et al. (2011) analyzed the

Haitian cholera outbreak, estimating reproduction numbers and vaccination thresholds.

Onuorah et al. (2022) integrated vaccination and variable populations, while Edward and

Nyerere (2015) examined control measures including treatment and sanitation. Optimal

control approaches have also been developed: Okosun and Makinde (2014) modeled treat-

ment and sanitation, while Agusto and Adekunle (2014) studied prevention and treatment

jointly. These works highlight the necessity of embedding control measures into stability

analysis. Stability considerations have been extensively studied in the general epidemic

modeling literature. Bawa et al. (2014) analyzed cholera dynamics with optimal control

and showed how stability is influenced by intervention strategies. Similarly, Brauer and

Castillo-Chavez (2012) emphasized the interplay between equilibrium stability and pop-

ulation heterogeneity. Taken together, these studies illustrate that while equilibrium and
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reproduction numbers provide threshold conditions, stability analysis is indispensable for

understanding the robustness of these equilibria under real-world perturbations. This

paper therefore contributes to the growing body of research by providing a comprehen-

sive local stability analysis of SIRB equilibrium points under vaccination and treatment,

extending the theoretical and practical insights into cholera dynamics. By focusing on

local stability, this work provides not only theoretical insight but also practical guidance

for designing robust cholera control strategies. Through stability analysis and numerical

simulations, we aim to provide insights into the conditions under which vaccination can

prevent large-scale outbreaks or eradicate the disease.

2 Model Formulation

We consider a population divided into four main compartments: susceptible (S), infected

(I), recovered (R), and bacteria concentration in the aquatic environment (B). The total

population at time t is N(t) = S(t) + I(t) +R(t).

The model is governed by the following system of nonlinear ordinary differential equa-

tions:

dS

dt
= µN − βpSI − βBSB − (µ+ ν + α)S, (1)

dI

dt
= βpSI + βBSB − (γ + µ+ δ)I + αS, (2)

dR

dt
= γI − µR + νS + δI, (3)

dB

dt
= ξI − (µB + η)B, (4)

(5)

where:

• µ is the natural birth/death rate,

• βp is the transmission coefficient for direct human-to-human infection,

• βB is the transmission coefficient for infection via the aquatic reservoir,
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• γ is the recovery rate,

• δ is the disease-induced mortality rate,

• ν is the vaccination rate,

• α is the rate of waning immunity back to susceptibility,

• ξ is the bacterial shedding rate from infected individuals,

• µB is the bacterial natural death rate, and

• η is the bacterial removal rate due to environmental sanitation.

Notation and Preparatory Identities

Introduce the commonly used combinations:

ρ := µ+ ν + α, σ := γ + µ+ δ, τ := µB + η.

Also recall the disease-free equilibrium (DFE), which requires α = 0:

S∗ =
µN

µ+ ν
, I∗ = 0 R, ∗ =

νN

µ+ ν
, B∗ = 0.

For compactness we denote S∗ simply by S∗ when substituted.

3 Jacobian Matrix (General Point)

The Jacobian J(S, I, R,B) of the right-hand side with respect to x = (S, I, R,B) has

entries:

∂Ṡ

∂S
= −βpI − βBB − ρ,

∂Ṡ

∂I
= −βpS,

∂Ṡ

∂R
= 0,

∂Ṡ

∂B
= −βBS,

∂İ

∂S
= βpI + βBB + α,

∂İ

∂I
= βpS − σ,

∂İ

∂R
= 0,

∂İ

∂B
= βBS,
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∂Ṙ

∂S
= ν,

∂Ṙ

∂I
= γ + δ,

∂Ṙ

∂R
= −µ,

∂Ṙ

∂B
= 0,

∂Ḃ

∂S
= 0,

∂Ḃ

∂I
= ξ,

∂Ḃ

∂R
= 0,

∂Ḃ

∂B
= −τ.

Thus

J(S, I, R,B) =



−βpI − βBB − ρ −βpS 0 −βBS

βpI + βBB + βα pS − σ 0 βBS

γν + δ −µ 0

0 ξ 0 −τ


.

4 Local Stability of the Disease-Free Equilibrium (DFE)

At the DFE we set α = 0. Then I∗ = B∗ = 0, and R∗ = νS∗

µ
.

Reordering the state as (I, B, S,R), the Jacobian becomes block lower-triangular:

JDFE =

J11 0

J21 J22

 ,

where

J11 =

βpS
∗ − σ βBS

∗

ξ −τ

 , J22 =

−ρ 0

ν −µ

 ,

and

J21 =

−βpS
∗ −βBS

∗

γ + δ 0

 .

4.1 Eigenvalues of J22

The block J22 is triangular with eigenvalues

λ3 = −ρ < 0, λ4 = −µ < 0.
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Eigenvalues of4.2 J11 and R0

The block

J11 =

βpS
∗ − σ βBS

∗

ξ −τ

 .

Characteristic polynomial:

det(J11 − λI) = (βpS
∗ − σ − λ)(−τ − λ)− βBS

∗ξ.

Equivalently,

λ2 − (βpS
∗ − σ − τ)λ−

[
τ(βpS

∗ − σ) + βBS
∗ξ
]
= 0.

4.3 Determinant and Trace

Determinant:

det(J11) = τσ − S∗(τβp + βBξ).

By definition of R0,

S∗(βp +
βBξ
τ
) = σR0 ⇒ S∗(τβp + βBξ) = τσR0.

Thus

det(J11) = τσ(1−R0).

Trace:

tr(J11) = (βpS
∗ − σ)− τ.

If R0 < 1, then βpS
∗ − σ < 0, so tr(J11) < −τ < 0.

4.4 DFE Stability Result

DFE is locally asymptotically stable ⇐⇒ R0 < 1,
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and unstable if R0 > 1.

5 Local Stability of the Endemic Equilibrium (EE)

When R0 > 1, an endemic equilibrium (S̄, Ī , R̄, B̄) with Ī , B̄ > 0 exists.

The Jacobian at EE:

JEE =



−βpĪ − βBB̄ − ρ −βpS̄ 0 −βBS̄

βpĪ + βB
¯ βB pS̄ − σ 0 βBS̄

γν + δ −µ 0

0 ξ 0 −τ


.

Characteristic polynomial:

det(JEE − λI) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4,

with coefficients

a1 = −tr(JEE), a2 = sum of principal 2× 2 minors,

a3 = −sum of principal 3× 3 minors, a4 = det(JEE).

5.1 Routh–Hurwitz Stability Criterion

The EE is locally asymptotically stable if and only if

a1 > 0, a2 > 0, a3 > 0, a4 > 0,

a1a2 − a3 > 0, (a1a2 − a3)a3 − a21a4 > 0.

5.2 Interpretation

• By biological positivity of parameters and equilibrium components, usually ai > 0.
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• The EE emerges through a transcritical bifurcation at R0 = 1, and is typically

locally stable for R0 > 1.

6 Summary

• Disease-Free Equilibrium: stable ⇐⇒ R0 < 1.

• Endemic Equilibrium: exists for R0 > 1 and typically stable (verified via Routh–

Hurwitz).

7 Numerical Example: Endemic Equilibrium and Routh–

Hurwitz Verification for the SIRB Model

Model (for reference)

We consider the SIRB model

Ṡ = µN − βpSI − βBSB − µS − νS − αS,

İ = βpSI + βBSB − γI − µI − δI + αS,

Ṙ = γI − µR + νS + δI,

Ḃ = ξI − µBB − ηB,

with the shorthand

ρ = µ+ ν + α, σ = γ + µ+ δ, τ = µB + η.
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We use the exact Jacobian evaluated at a general equilibrium (S, I, R,B):

J(S, I, R,B) =



−βpI − βBB − ρ −βpS 0 −βBS

βpI + βBB + βα pS − σ 0 βBS

γν + δ −µ 0

0 ξ 0 −τ


.

Parameter choice (biologically plausible)

We normalize N = 1 (fractions). Parameter values (per day) used in this example:

DescriptionValueParameter

µ 3.913 89× 10−5 natural death rate (1/(70 yr) in days)
ν 1.000 00× 10−4 vaccination rate (per day)
α 0 infection import rate (set to 0)
βp 0.600 000 direct transmission coefficient (per day)
βB 0.200 000 environmental transmission coefficient (per day)
γ 0.200 000 recovery rate (1/5 day−1)
δ 0.010 000 0 additional removal/treatment rate (per day)
µB 0.500 000 natural bacterial decay (per day)
η 0.100 000 bacterial removal (per day)
ξ 0.500 000 bacterial shedding rate (per day)

Derived constants:

ρ = µ+ν+α = 0.000 139 139, σ = γ+µ+δ = 0.210 039, τ = µB+η = 0.600 000.

7.1 Basic reproduction number

Using the DFE susceptible value S∗ =
µN

µ+ ν
and the next-generation result, we compute

R0 =
S∗

σ

(
βp + βB

ξ

τ

)
.

Numerically,

S∗ = 0.281 294 R, 0 = 1.026 75.
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Thus R0 > 1 and the model admits a biologically admissible endemic equilibrium.

7.2 Solve for the endemic equilibrium (EE)

We solve the steady-state algebraic system

Ṡ = İ = Ṙ = Ḃ = 0

numerically. The solution returned by a root solver (fsolve) is:

S̄ = 0.273 964,

Ī = 4.855 61× 10−6,

R̄ = 0.726 031,

B̄ = 4.046 34× 10−6.

(Interpretation: with these parameters R0 is just slightly above 1; hence the endemic

prevalence is very small but positive.)

7.3 Jacobian evaluated at the EE

Substitute the equilibrium into the Jacobian to obtain (numerically):

JEE ≈



−1.4286× 10−4 −1.6438× 10−1 0 −5.4793× 10−2

3.7226× 10−6 −4.5661× 10−2 50 .4793× 10−2

1.0000× 10−4 2.1000× 10−1 −3.9139× 10−5 0

50 .0000× 10−1 0 −6.0000× 10−1


.

7.4 Quartic characteristic polynomial coefficients

For the characteristic polynomial

det(λI − JEE) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4,
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the coefficients computed from traces / minors of JEE are

a1 = − tr(JEE) = 0.645 843,

a2 =
1
2

(
(tr J)2 − tr(J2)

)
= 0.000 118 128,

a3 = −1
6

(
(tr J)3 − 3 tr J tr(J2) + 2 tr(J3)

)
= 4.727 74× 10−7,

a4 = det(JEE) = 1.836 16× 10−11.

7.5 Eigenvalues

The numerical eigenvalues of JEE (roots of the quartic) are:

λ1 ≈ −3.9139× 10−5, λ2 ≈ −6.4566× 10−1,

λ3,4 ≈ −7.1342× 10−5 ± 8.4942× 10−4 i.

All eigenvalues have strictly negative real parts in this example.

7.6 Routh–Hurwitz verification

For a quartic polynomial the Routh–Hurwitz conditions for all roots to have negative real

parts are:

a1 > 0, a2 > 0, a3 > 0, a4 > 0,

a1a2 − a3 > 0,

(a1a2 − a3)a3 − a21a4 > 0.

Plugging the computed coefficients gives:

a1 = 0.645 800 > 0, a2 => 0, a3 => 0,

a4 => 0,

a1a2 − a3 = > 0,

(a1a2 − a3)a3 − a21a4 = > 0.
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All Routh–Hurwitz inequalities are satisfied; therefore the endemic equilibrium is locally

asymptotically stable for this parameter set (consistent with the negative eigenvalue real

parts computed above).

7.7 Interpretation

• The chosen parameters produce R0 ≈ 1.027 > 1, so an endemic equilibrium exists.

Because R0 is only slightly above 1 the endemic prevalence is very small (Ī ≈

4.9× 10−6) in the normalized population.

• The Jacobian evaluated at the EE yields a quartic characteristic polynomial with

coefficients all positive and satisfying the Routh–Hurwitz inequalities, and the eigen-

values all have negative real parts — hence the EE is locally asymptotically stable.

• Practically, this example shows how even a small overshoot above R0 = 1 produces a

small but persistent infection level: control efforts (raising vaccination ν, increasing

environmental removal τ , reducing shedding ξ or transmission coefficients βp, βB)

can move R0 below unity and eliminate the disease (DFE stable).

8 Conclusion and Recommendation

8.1 Conclusion

In this study, we examined the local stability properties of the disease-free equilibrium

(DFE) and the endemic equilibrium (EE) of a cholera SIRB (Susceptible–Infected–Recovered–Bacteria)

model with vaccination and treatment. By employing rigorous mathematical analysis,

we derived the equilibrium points and determined their stability conditions through the

Jacobian matrix approach and the Routh–Hurwitz criteria. Furthermore, a worked nu-

merical example with biologically realistic parameters confirmed the analytical results,

providing concrete evidence of the model’s dynamical behavior. The analysis revealed

that the DFE is locally asymptotically stable whenever the basic reproduction number

R0 < 1. This implies that under such conditions, small perturbations from the disease-
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free state will decay over time, leading to the eventual eradication of cholera. Biologically,

this highlights the critical role of public health interventions—particularly vaccination,

effective treatment, and environmental sanitation—in maintaining the system below the

epidemic threshold. Conversely, when R0 > 1, the DFE loses stability and the system

gravitates towards the EE, indicating the persistence of cholera in the population. The

endemic equilibrium point was also shown to be locally asymptotically stable under the

Routh–Hurwitz conditions, provided the epidemiological parameters ensure that R0 > 1.

The stability of the EE implies that cholera will persist at a steady but non-negligible

level in the population, with disease prevalence and bacterial concentration depending

sensitively on the transmission rates and recovery parameters. The numerical example

corroborated these theoretical findings, showing convergence towards the EE for realistic

parameter values when R0 > 1. From the derivations and the numerical evidence, it can

be deduced that cholera control strategies must be directed at reducing R0 below unity.

This can be achieved through widespread vaccination, prompt treatment of infected indi-

viduals, improved access to clean water, and effective environmental sanitation measures

to reduce bacterial contamination. Additionally, the analysis underscores that partial

interventions that fail to bring R0 below one may only stabilize cholera at endemic levels,

without achieving eradication.

8.2 Recommendations

1. Public Health Strategies: Vaccination should be prioritized in endemic regions

to reduce the susceptible population, coupled with timely treatment interventions

to accelerate recovery and lower transmission.

2. Environmental Measures: Improving water quality, sanitation, and hygiene

(WASH) infrastructure is essential to reduce bacterial concentration in the envi-

ronment, thereby suppressing indirect transmission pathways.

3. Mathematical Insights for Policy: The threshold condition R0 < 1 should

guide health policymakers in designing effective cholera control programs. Resource
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allocation should be aligned with strategies that guarantee reduction of R0 below

unity.

In conclusion, the local stability analysis of the SIRB model demonstrates that controlling

cholera is mathematically achievable, but requires coordinated, multi-faceted interven-

tions. The interplay of vaccination, and environmental management is key to achieving

sustainable eradication, and the mathematical framework provided herein offers a valu-

able tool for designing and evaluating public health strategies.
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