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Abstract 

This research explores the interplay between residually nilpotent groups� and �, 

focusing on their relationship through the lens of para-� conditions and the 

Hirsch length. We establish criteria for � to be para-� concerning 

monomorphisms inducing isomorphisms between corresponding lower central 

quotients of � and �. Specifically, we investigate these conditions in the context 

of finitely generated residually nilpotent groups. Further, for certain polycyclic 

groups, we establish connections between para-� relations and the equality of 

Hirsch lengths. Additionally, we delve into the pro-nilpotent completions of these 

polycyclic groups, demonstrating their local polycyclic nature. 
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1. INTRODUCTION 

Residually nilpotent groups play a pivotal role in group theory, and understanding 

their relationships is essential for exploring the underlying algebraic structures. 

The study by [1] provides foundational insights into para-� conditions in group 

theory, particularly in the context of residually nilpotent groups. Hall's work lays 

the groundwork for understanding the interconnections between groups and the 

criteria for para-� relations.The concept of Hirsch length has been extensively 

explored in relation to finitely generated groups. [2]'s seminal work (1967) 

investigates the properties of the Hirsch length and its implications in the study of 

groups.The exploration of para-� relations within polycyclic groups is addressed 

by [3]. This work delves into the specific conditions and implications of para-� 

relations in the context of polycyclic structures.The study of pro-nilpotent 

completions in the realm of polycyclic groups is discussed by [4] and itprovides 

insights into the local polycyclic nature of these completions, contributing to the 

broader understanding of their properties. This research focuses on establishing 

and characterizing para-� relations between residually nilpotent groups� and �, 

with a particular emphasis on monomorphisms inducing isomorphisms between 

their lower central quotients. We extend our investigation to finitely generated 

groups and explore conditions for � to be para-�. Moreover, we explore the 

implications of para-� relations on the Hirsch length of certain polycyclic groups. 

2. PRELIMINARY 

Definition (Residually Nilpotent Groups) 2.1. A group G is said to be residually 

nilpotent if, for every non-identity element g in G, there exists a normal subgroup 

N of finite index such that N is a nilpotent group. In other words, every non-

identity element of the group can be separated from the identity by a finite-index 

normal subgroup that is nilpotent. 
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Example (Residually Nilpotent Groups) 2.2. Consider the group G=Z×S3, 

where Z is the additive group of integers and S3 is the symmetric group on three 

elements. This group is a direct product of an infinite cyclic group (Z) and a finite 

group (S3). The group G is residually nilpotent because: 

1. For any non-identity element (n,e) ∈ G, where n is a non-zero integer and e 

is the identity element of S3, we can consider the subgroup N = {(0,e)}. 

This subgroup is of finite index, and N is nilpotent. 

2. For any non-identity element (0,σ) ∈ G, where σ is a non-identity 

permutation in S3, we can consider the subgroup N = { (0,σ), (0,e) }. This 

subgroup is of finite index, and N is nilpotent. 

Thus, G = Z × S3 is an example of a residually nilpotent group 

Definition (Para-� Relations) 2.3. Let G and H be two groups. The relation 

φ:G→H is a para-G relation if, for every normal subgroup N of G, the induced 

homomorphism φN:G/N→H/φ(N) is an isomorphism, where φ(N) = {φ(g)|g∈N} is 

the image of N under φ. 

In simpler terms, a para-G relation is a condition on a group homomorphism 

φ:G→H such that the homomorphism induces isomorphisms between 

corresponding lower central quotients for every normal subgroup of G. For a 

good homomorphism and the generators of its inner automorphism see [29] and 

[30]. 
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Example (Para-� Relations) 2.4. Let's consider two groups G and H with the 

following properties: 

G = ⟨a, b| a2 = b2 = (ab)2 = e⟩ 

H = ⟨x,y| x2 = y2 = (xy)3 = e⟩ 

Define a group homomorphism φ:G→H by mapping a to x and b to y. This 

homomorphism φ is a para-G relation if, for every normal subgroup N of G, the 

induced homomorphism φN:G/N→H/φ(N) is an isomorphism. 

For example, consider the normal subgroup N = ⟨a⟩ of G. The induced 

homomorphism φN:G/N→H/φ(N) is an isomorphism because: 

φN(eN) = φ(e) = e = φ(N) 

φN(bN) = φ(b) = y = φ(N) 

This holds for every normal subgroup of G, and therefore, the homomorphism φ 

is a para-G relation between G and H. 

Definition (Hirsch Length) 2.5. The Hirsch length of a group G, denoted as 

h(G), is a non-negative integer that measures the growth rate of the lower central 

series of G. Specifically, h(G) is the length of the shortest possible generating 

tuple (g1,g2,…,gk) for G such that the i-th term of the lower central series of G is 

generated by g1,g2,…,gi for each i from 1 to k. 

In other words, h(G) is the smallest integer k such that G(k)={e}, where G(k) 

denotes the k-th term of the lower central series of G. 
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Example (Hirsch Length) 2.6. Consider the free group F2 on two generators a 

and b, i.e., F2=⟨a,b|⟩. The lower central series of F2 is given by: 

F2
(1)=F2 

F2
(2) = [F2,F2] = ⟨[a,b]⟩ 

F2
(3) = [F2,F2

(2)] 

And so on. 

In this case, the Hirsch length h(F2) is 2 because the shortest generating tuple 

(g1,g2) is (a,[a,b]), and F2
(2) = ⟨[a,b]⟩ is generated by a and [a,b]. If one tries to 

generate F2
(3), a longer tuple is needed. 

So, for the free group F2,h(F2) = 2. 

Definition (Pro-Nilpotent Completions) 2.7. Let G be a group. The pro-

nilpotent completion of G, denoted as ��nil or ����, is the completion of G with 

respect to the pro-nilpotent topology. The pro-nilpotent topology on G is defined 

by the collection of all normal subgroups N of G such that the quotient G/N is 

nilpotent. 

The pro-nilpotent completion ��nil is the projective limit of the nilpotent quotients 

G/N over all normal subgroups N of G. Formally, it is given by: 

��nil = lim← �/� 

where the projective limit is taken over all normal subgroups N of G, and each 

G/N is a nilpotent group. 
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Example (Pro-Nilpotent Completions) 2.8. Consider the additive group of 

integers Z. The pro-nilpotent completion ��nil is obtained by considering all normal 

subgroups N of Z such that the quotient Z/N is a nilpotent group. 

Since every quotient Z/nZ is nilpotent (as it is a cyclic group of prime order), the 

pro-nilpotent completion ��nil is the projective limit of all these nilpotent quotients: 

��nil= lim← �/�� 

This pro-nilpotent completion can be identified with the ring of p-adic integers Zp, 

where p is any prime number. The pro-nilpotent completion captures the p-adic 

topology of the integers. 

3.CENTRAL IDEA  

Lemma 3.1. Characterization of para-� relations in finitely generated residually 

nilpotent groups. 

Statement: Let G be a finitely generated residually nilpotent group. A group 

homomorphism φ:G→H is a para-� relation if and only if, for every finitely 

generated subgroup K of G, the kernel ker(φ↾K) is nilpotent. 

Proof: 

Forward Direction: Assume φ:G→H is a para-� relation. This implies that for 

every normal subgroup N of G, the induced homomorphism φN:G/N→H/φ(N) is 

an isomorphism. Consider a finitely generated subgroup K of G, and let L be a 

normal subgroup of K. Since K is finitely generated, L is also finitely generated. 

Now, consider the homomorphism φ↾K:K→H obtained by restricting φ to K. The 

kernel of φ↾K isker(φ↾K) = K∩ker(φ), where ker(φ) is the kernel of φ in G. 
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Since φ is a para-� relation, ker(φ) is nilpotent. As L is a normal subgroup of K, L 

is also a normal subgroup of ker(φ). Thus, the quotient ker(φ)/L is nilpotent. By 

the correspondence theorem, this implies that (ker(φ)/L)∩K/L is nilpotent. 

Now, consider the homomorphism φK/L:K/L→H/φ(L) induced by φ on the 

quotient group K/L. The kernel of φK/L is (ker(φ)/L)∩K/L. Since this intersection is 

nilpotent, it follows that φK/L is an isomorphism. Therefore, φ↾K has a nilpotent 

kernel. 

Backward Direction: Conversely, assume that for every finitely generated 

subgroup K of G, the kernel ker(φ↾K) is nilpotent. We need to show that φ is a 

para-� relation. 

Let N be a normal subgroup of G, and consider the induced homomorphism φN

:G/N→H/φ(N). We aim to show that φN is an isomorphism. 

Take any finitely generated subgroup K/N of G/N. By the correspondence 

theorem, this corresponds to a finitely generated subgroup K of G containing N. 

Now, consider the homomorphism φK:K→H obtained by restricting φ to K. By 

assumption, the kernel ker(φK) = K∩ker(φ) is nilpotent. 

Let L be the normal subgroup L = K∩N. Since ker(φK) is nilpotent, it follows that 

(ker(φK)/L)∩(K/L) is nilpotent. Now, consider the homomorphism φK/L

:K/L→H/φ(L) induced by φ on the quotient group K/L. The kernel of φK/L is 

(ker(φK)/L)∩(K/L), which is nilpotent. 

Therefore, φK/L is an isomorphism. Since K/N was an arbitrary finitely generated 

subgroup of G/N, this holds for all finitely generated subgroups of G/N. Thus, φN 

is an isomorphism. 
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Since N was an arbitrary normal subgroup of G, this establishes that φ is a para-

� relation. 

By proving both directions, we conclude that a group homomorphism φ:G→H is a 

para-� relation if and only if, for every finitely generated subgroup K of G, the 

kernel ker(φ↾K) is nilpotent. The lemma is proved. 

Proposition 3.2. Sufficient conditions on monomorphisms for � to be para-�. 

Statement: Let φ:G→H be a monomorphism, where G is a finitely generated 

residually nilpotent group, and H is a group. If, for every finitely generated 

subgroup K of G, the image φ(K) is a para-� relation in H, then H is para-�. 

Proof: 

Assume φ:G→H is a monomorphism, where G is finitely generated and 

residually nilpotent, and H is a group. Suppose that for every finitely generated 

subgroup K of G, the image φ(K) is a para-� relation in H. We aim to show that H 

is para-�. 

Let N be a normal subgroup of H, and consider the induced homomorphism φN

:G/ker(φ)→H/N. We need to show that φN is an isomorphism. 

Consider any finitely generated subgroup K/ker(φ) of G/ker(φ). By the 

correspondence theorem, this corresponds to a finitely generated subgroup K of 

G containing ker(φ). Now, the image φ(K) is a para-� relation in H, as per our 

assumption. 

Therefore, the induced homomorphism φK:K→H obtained by restricting φ to K is 

a para-� relation in H. This implies that the induced homomorphism φK/ker(φ)

:K/ker(φ)→φ(K) is an isomorphism. 
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Now, consider the homomorphism φK/N:K/N→H/N induced by φ on the quotient 

group K/N. This is the composition of the isomorphism φK/ker(φ) and the natural 

projection K/ker(φ)→K/N. Since compositions of isomorphisms are 

isomorphisms, φK/N is an isomorphism. 

Since K/N was an arbitrary finitely generated subgroup of G/ker(φ), this holds for 

all finitely generated subgroups of G/ker(φ). Thus, φN is an isomorphism. 

Since N was an arbitrary normal subgroup of H, this establishes that H is para-�. 

By proving the sufficiency of the conditions on monomorphisms for H to be para-

�, the proposition is proved. 

Theorem 3.3. Implications of para-� relations on the Hirsch length of certain 

polycyclic groups. 

Statement: Let G be a finitely generated residually nilpotent group with a para-� 

relation in its subgroup H. If G is polycyclic, then the Hirsch length of G is 

bounded by the Hirsch length of H. 

Proof: 

Assume G is a finitely generated residually nilpotent group with a para-� relation 

in its subgroup H. Suppose G is polycyclic. We aim to show that the Hirsch 

length of G is bounded by the Hirsch length of H. 

Recall that the Hirsch length of a group is a measure of the growth rate of its 

lower central series. Let G = ⟨g1, g2, …, gn⟩ be a generating set for G. Since G is 

polycyclic, it has a subnormal series 
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1 = G0 ⊴ G1 ⊴ …⊴ Gk = G, 

where each factor group Gi+1/Gi is cyclic. 

Consider the subgroup H′ = ⟨φ(g1), φ(g2),…,φ(gn)⟩ of H, where φ:G→H is the 

para-� relation. Since H is para-�, the Hirsch length of H is finite. 

Now, consider the induced homomorphism φi:Gi→H′ for each i=0,1,…,k. Since Gi 

is normal in Gi+1, the factor group Gi+1/Gi is cyclic, and φi(Gi+1) is cyclic in H′. 

Therefore, H′ also has a subnormal series 

1 = H0′ ⊴ H1′ ⊴ …⊴ Hk′ = H′, 

where each factor group H′i+1/Hi′ is cyclic. 

Since the Hirsch length of H′ is finite, the subnormal series of H′ stabilizes, i.e., 

there exists i0 such that Hi′ = H′i0 for all i≥i0. Correspondingly, the subnormal 

series of G stabilizes at i0, i.e., Gi = Gi0 for all i≥i0. 

This implies that the Hirsch length of G is bounded by the Hirsch length of H′, 

which is finite. Therefore, the theorem is proved. 

Theorem 3.4. Locally polycyclic nature of pro-nilpotent completions of specific 

polycyclic groups. 

Statement: Let G be a polycyclic group. The pro-nilpotent completion of G with 

respect to the pro-nilpotent topology is locally polycyclic. 

Proof: 

Consider a polycyclic group G. We aim to show that the pro-nilpotent completion 

of G, denoted��, with respect to the pro-nilpotent topology is locally polycyclic. 
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Recall that the pro-nilpotent completion �� is constructed as the inverse limit of 

the family of all nilpotent quotients of G. Specifically, if{Ni} is the family of all 

normal nilpotent subgroups of G ordered by inclusion, then 

�� = lim
←

�/�� 

where the morphisms in the inverse limit are the natural projection maps. 

Since G is polycyclic, it has a subnormal series 

1 = G0 ⊴ G1 ⊴ …⊴ Gk = G, 

where each factor group Gi+1/Gi is cyclic. 

Consider the corresponding subnormal series induced on each G/Ni: 

1 = G0/Ni ⊴ G1/Ni⊴…⊴Gk/Ni = G/Ni. 

Since each factor groupGi+1/Gi is cyclic, the corresponding factor groups (Gi+1/Gi

)/Ni are also cyclic. This implies that each G/Ni is a polycyclic group. 

Now, let {Hj} be the family of all normal subgroups of G that are contained in 

some Ni. Each Hj is nilpotent because it is contained in a nilpotent subgroup Ni. 

Therefore, �� is the inverse limit of polycyclic groups, and it is locally polycyclic. 

Thus, we have shown that the pro-nilpotent completion �� of a polycyclic group G 

is locally polycyclic. The theorem is proved. 

4.CONCLUSION 

This research contributes to the understanding of para-� relations and their 

implications for residually nilpotent groups. The findings shed light on the 

interplay between these groups, providing insights into their structural properties, 
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particularly in the context of finitely generated groups and certain polycyclic 

groups. The established results open avenues for further exploration in the 

broader landscape of group theory. 
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