

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/

Volume 07 || Issue 08 || August, 2024 || PERFORMANCE EVALUATION OF CANONICAL CORRELATION ANALYSIS AND REDUNDANCY ANALYSISUSING GAUSSIAN, GAMMA, EXPONENTIAL AND BETA DISTRIBUTED DATA

PERFORMANCE EVALUATION OF CANONICAL CORRELATION ANALYSIS AND REDUNDANCY

ANALYSISUSING GAUSSIAN, GAMMA, EXPONENTIAL AND BETA DISTRIBUTED DATA

Osuagwu, Chidimma Udo

Department of Statistics, Federal University of Technology, Owerri, Imo State Nigeria

Okenwe Idochi Department of Statistics, School of Applied Sciences, Ken Saro Wiwa Polytechnic PMB 20, Bori, Rivers State Nigeria

Abstract

This study was embarked to examine the performance evaluation of canonical correlation and redundancy analysis with some continuous distributed data (Gaussian, Gamma, Exponential and Beta). The objectives of the study were to: obtain the relative efficiency of CCA and RDA techniques for four continuous distributed simulated data; and determine the model performance adequacy of CCA and RDA techniques. Three variates of the response variable (Y₁, Y₂, Y₃) and three variates of independent variables (X1, X2, X3) were used for the simulation. The means used for response and independent variables for the Gaussian distribution were 80, 85 and 90, whereas their standard deviations were 10, 12 and 15. The alpha values used for response and independent variables for the Gamma distribution were 80, 85 and 90 whereas their theta values were 40, 43 and 45. The rates parameters used for response and independent variables for the Exponential distribution were 0.5, 0.7 and 0.9; whereas the shape parameters used for the Beta distribution were taking from 2 to 5 values. The adequacy of the CCA and RDA was evaluated with Wilcoxon rank sum test; and the study concluded that RDA was more efficient than that of CCA for the Beta distributed data, while for Gaussian, Gamma and Exponential distributed data, the relative efficiency of the CCA and RDA was the same. The study also concluded that the Xvariates of the CCA and RDA did not differ.

Canonical correlation analysis, Redundancy analysis, Gaussian. Gamma. Exponential, Beta, Performance evaluation, Simulated data.

1 Introduction

Canonical Correlation Analysis (CCA) and Redundancy Analysis (RDA) are multivariate statistical techniques used to analyze the relationships between two or more sets of variables.CCA is a method for analyzing the relationships between two sets of variables, X and Y, by finding the linear combinations of variables that maximize the correlation between the two sets, which was developed by Hotelling in 1936 (Górecki et al, 2020). Canonical Correlation Analysis (CCA) involves finding a linear transformation that converts the original variables from

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/

 $\frac{\text{ttps://ijojournals.com/}}{\text{Performance evaluation of canonical correlation analysis and redundancy analysisusing gaussian, gamma, exponential and beta distributed data}$

two sets into new sets of variables (Wang et al., 2022). These new variables have the property of being uncorrelated within each set, but maximally correlated between sets. The resulting pairs of new variables are called canonical variates, and the correlation coefficients between these pairs are known as canonical correlations. By identifying these canonical variates and correlations, CCA reveals the underlying relationships between the two sets of variables (Li et al., 2020).

RDA is a statistical method that summarizes the linear relationships between two sets of variables, one set being the explanatory variables and the other being the response variables (Ramette, 2017). It's an extension of multiple linear regression; allowing for multiple response variables to be regressed on multiple explanatory variables. RDA produces an ordination that summarizes the main patterns of variation in the response matrix, which can be explained by a matrix of explanatory variables (Hui&Warton, 2022).

The results of RDA include the total variance of the data set, partitioned into constrained and unconstrained variances, which shows how much variation in the response variables was redundant with the variation in the explanatory variables (Székely et al., 2020). RDA also produces scores for objects, response variables, and explanatory variables, which can be used to ordinate points and vectors. RDA is often used in ecological studies to relate environmental variables to species composition. For example, Ramette (2007) used RDA to analyze the relationships between microbial community composition and environmental variables in coastal sands

This study therefore was aimed to: ascertain the relative efficiency of CCA and RDA techniques for four continuous distributed simulated data; and determine the model performance adequacy of CCA and RDA techniques.

2 **Review of Related Literature**

Makino (2022) explored the application of rotation in correspondence analysis (CA) from a canonical correlation perspective. CA is a statistical method used to visualize the relationship between two categorical variables, typically emphasizing graphical representations. Makino's study introduced a CA formulation based on canonical correlation analysis (CCA), where correlations within and between row/column categories in a reduced dimensional space can be expressed through canonical variables. However, existing CCA-based formulations only allowed for orthogonal rotation. Makino proposed an alternative CCA-based formulation that permits oblique rotation, defining the CA loss function as maximizing the generalized coefficient of determination, which measures the proximity between two variables. The study demonstrated the benefits of the proposed formulation through simulation studies and real data examples.

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/

 $\frac{\text{tps://ijojournals.com/}}{\text{performance evaluation of Canonical Correlation analysis and redundancy analysisusing Gaussian, Gamma, exponential and beta distributed data}$

Nayir and Saridas (2022) investigated the relationship between culturally responsive teacher roles and innovative work behavior using canonical correlation analysis. The study aimed to identify the relationship between these two constructs based on teachers' views. The results showed that the first canonical function, which maximized the relationship between the two datasets, shared approximately 77% variance. Furthermore, the analysis revealed a positive relationship between the culturally regulating teacher (CRT) and culturally mediating teacher (CMT) variables in the culturally responsive teacher roles dataset and the GII and FSI variables in the innovative work behavior dataset.

McKeague and Zhang (2021) investigated significance testing for canonical correlation analysis in high-dimensional settings. They addressed the challenge of testing for linear relationships between large sets of random variables using post-selection inference techniques. The authors developed a stabilized one-step estimator for the Euclidean norm of canonical correlations, which was shown to be consistent and asymptotically normal under certain conditions. They also proposed a greedy search algorithm for computing the estimator, leading to a computationally tractable omnibus test for the global null hypothesis. Additionally, they constructed a confidence interval that accounted for variable selection.

García-Valdés et al. (2020) conducted a study using Redundancy Analysis (RDA) to examine the impacts of climate change on species distribution in a Mediterranean ecosystem, incorporating 155 plant species and 15 environmental variables. The analysis revealed that climate variables, including temperature, precipitation, and drought, explained a significant portion of the variation in species distribution, accounting for 24.5% of the variation. Additionally, soil and topographic variables played important roles, explaining 20.1% and 15.4% of the variation, respectively. The study's findings suggested that climate change led to shifts in species distribution, resulting in some species expanding their ranges while others contract. The RDA framework provided a powerful tool for understanding the complex relationships between climate change and species distribution, with important implications for conservation and management efforts in the face of climate change.

3 **Materials and Methods**

Canonical Variates and Canonical Correlations 3.1

The canonical correlations measure the strength of association between the two sets of variables (Wang & Liu, 2022). The first group of p variables is represented by the $(p \times 1)$ random vector $\mathbf{X}^{(1)}$, while the second group of q variables is represented by the $(\mathbf{q} \times 1)$ random vector $\mathbf{X}^{(2)}$. It will be assumed, in the theoretical development, that $\mathbf{X}^{(1)}$ represents the smaller set, so that $\mathbf{p} \leq \mathbf{q}$. For the random vectors $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$, let

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/ Performance evaluation of canonical correlation analysis and redundancy analysis using Gaussian, Gamm

Volume 07 || Issue 08 || August, 2024 || susing gaussian, gamma, exponential and beta distributed data

$$E(\mathbf{X}^{(1)}) = \boldsymbol{\mu}^{(1)}; \quad Cov(\mathbf{X}^{(1)}) = \Sigma_{11}$$

$$E(\mathbf{X}^{(2)}) = \boldsymbol{\mu}^{(2)}; \quad Cov(\mathbf{X}^{(2)}) = \Sigma_{22}$$

$$Cov(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}) = \Sigma_{11} = \Sigma'_{22}$$
(1)

It will be convenient to consider $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ jointly, so, the random vector

$$\mathbf{X}_{((p+q)\times 1)} = \begin{bmatrix} \mathbf{X}_{1}^{(1)} \\ \mathbf{X}_{2}^{(1)} \\ \vdots \\ \mathbf{X}_{p}^{(2)} \\ X_{1}^{(2)} \\ X_{2}^{(2)} \\ \vdots \\ X_{q}^{(2)} \end{bmatrix} = \begin{bmatrix} X_{1}^{(1)} \\ X_{2}^{(1)} \\ \vdots \\ X_{2}^{(2)} \\ \vdots \\ X_{q}^{(2)} \end{bmatrix}$$
(2)

has mean vector

$$\mu_{((p+q)\times 1)} = E(\mathbf{X}) = \left[\frac{E(\mathbf{X}^{(1)})}{E(\mathbf{X}^{(2)})}\right] = \left[\frac{\mu^{(1)}}{\mu^{(2)}}\right]$$
(3)

and covariance matrix

$$\sum_{(p+q)\times(p+q)} = E(\mathbf{X} - \mathbf{\mu})E(\mathbf{X} - \mathbf{\mu})'$$

$$= \left[\frac{E(\mathbf{X}^{(1)} - \mathbf{\mu}^{(1)})(\mathbf{X}^{(1)} - \mathbf{\mu}^{(1)})'}{E(\mathbf{X}^{(2)} - \mathbf{\mu}^{(2)})(\mathbf{X}^{(1)} - \mathbf{\mu}^{(1)})'} \cdot \frac{E(\mathbf{X}^{(1)} - \mathbf{\mu}^{(1)})(\mathbf{X}^{(2)} - \mathbf{\mu}^{(2)})'}{E(\mathbf{X}^{(2)} - \mathbf{\mu}^{(2)})(\mathbf{X}^{(2)} - \mathbf{\mu}^{(2)})'} \right]$$

$$\begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ (p \times p) & (p \times q) \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \\ (q \times p) & (q \times q) \end{bmatrix}$$
(4)

3.2 Matrices and Computational Procedures of Redundancy Analysis

Let \mathbf{x} be a $p \times 1$ vector that includes \mathbf{p} predictor variables in the first set and \mathbf{y} be a $q \times 1$ vectorthat includes \mathbf{q} criterion variables in the second set. According to Van Den Wollenberg in 1977, all variables in \mathbf{x} and \mathbf{y} should be standardized variables with zero mean and unit variance (Gua et al., 2023). Thus, the $(p+q)\times(p+q)$ covariance matrix of the $(p+q)\times 1$ vector $(\mathbf{x}'\mathbf{y}')'$ is a correlation matrix, denoted by \mathbf{R} , which can be partitioned as

IJO - INTERNATIONAL JOURNAL OF

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_{xx} & \mathbf{R}_{xy} \\ \mathbf{R}_{yx} & \mathbf{R}_{yy} \end{pmatrix},\tag{4}$$

where \mathbf{R}_{xx} is the $p \times p$ correlation matrix of \mathbf{x} , \mathbf{R}_{yy} is the $q \times q$ correlation matrix of \mathbf{y} , and $\mathbf{R}_{vx} = \mathbf{R}'_{xv}$ is a $q \times p$ matrix that includes the inter-set correlations between \mathbf{x} and \mathbf{y} .

To construct p redundancy variates, denoted by ξ_i ($i = 1, 2, \dots, p$), with p predictor variables in x, the characteristic equation is evaluated as shown in Equation (5):

$$(\mathbf{R}_{xy}\mathbf{R}_{yx} - \mathbf{\mu}_i \mathbf{R}_{xx})\mathbf{w}_i = 0, \tag{5}$$

where μ_i is the *i*th eigenvalue and \mathbf{w}_i is the *i*th eigen-vector. Then, one can employ the weight coefficients that are the elements of the scaled eigenvector \mathbf{w}_i to construct ξ_i , such that:

(a) ξ_i is uncorrelated with ξ_i ($i \neq j$), and (b) ξ_i has unit variance ($i = 1, 2, \dots, p$).

3.3 **Continuous Probability Distributions**

Four probability distributions known as the Gaussian, Gamma, Beta and Exponential are discussed in this study.

The Gaussian Distribution

A random variable (R.V.) in continuous form say X, choosing the whole real values in intervals $(-\infty,\infty)$ is known to be a Gaussian (also known as normal) distribution with μ and σ^2 as its parameters if the probability density function (pdf) is defined by

$$f(x) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi}} & e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma^2 > 0 \\ 0 & otherwise \end{cases}$$
 (6)

Where the study used the notation $N(\mu; \sigma^2)$ to show that X is normal with mean μ and variance σ^2 (Sumair, et al., 2021). This pdf is bell-shaped, symmetrical, and centered at its mean value μ .

The entire area bounded by this function f(x) and x-axis is 1 and therefore the area beneath the curve across two values of X, say, a and b with a < b, constitutes the probability that the R.V X lies across a and b, which we write as P(a < X < b). An example of a normal R.V is height of students at a specified age for a specified sex in a specified racial group even though heights must be positive (El-Morshedy et al., 2021).

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

 $\frac{\text{https://ijojournals.com/}}{\text{performance evaluation of canonical correlation analysis and redundancy analysisusing Gaussian, Gamma, exponential and beta distributed data} \\ Volume 07 || Issue 08 || August, 2024 ||$

The pdf of a standard normal distribution is

$$f(z) = \begin{cases} 1/\sqrt{2\pi}e^{-\frac{z^2}{2}}, -\infty < z < \infty \\ 0, \quad otherwise \end{cases}$$
 (7)

The respective mean and variance of a Gaussian distribution are respectively given as;

$$E(X) = \mu \tag{8}$$

and

$$Var(X) = \sigma^2 \tag{9}$$

3.3.2 **Gamma Distribution**

A R.V X is said to follow a gamma R.V with parameters α and β , if its pdf is given by:

$$f(x) = \begin{cases} \frac{x^{\alpha - 1} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}, & x \ge 0, \ \alpha > 0, \ \beta > 0\\ 0, \text{ otherwise} \end{cases}$$
 (10)

where $\Gamma(\alpha)$ is the gamma function defined as;

$$\Gamma(\alpha) = \int_{0}^{\infty} t^{\alpha - 1} e^{-t} dt \tag{11}$$

The gamma probability density function as given in Equation (10) is a normal or legitimate pdf.

The respective mean and variance of a Gamma distribution are respectively given as;

$$E(X) = \alpha \beta \tag{12}$$

and

$$Var(X) = \alpha \beta^2 \tag{13}$$

To obtain the scale (β) and shape (α) parameters of a gamma distribution, we have

$$E(X) = \mu = \alpha \beta \tag{14}$$

$$Var(X) = \sigma^2 = \alpha \beta^2 \tag{15}$$

From Equation (14), put $\alpha = \frac{\mu}{\beta}$ into Equation (15) to obtain

$$\sigma^2 = \mu \beta \tag{16}$$

From Equation (16), the scale parameter is obtained as

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/
PERFORMANCE EVALUATION OF CANONICAL CORREL

Volume 07 || Issue 08 || August, 2024 || gusing gaussian, gamma, exponential and beta distributed data

$$\beta = \frac{\sigma^2}{\mu} \tag{17}$$

Substitute Equation (17) into Equation (14) to obtain the shape parameter as

$$\alpha = \frac{\mu^2}{\sigma^2} \tag{18}$$

Equations (17) and (18) were employed in the simulation of data for gamma distribution in this study.

3.2.3 The Exponential Distribution

A continuous random variable X, is said to have an exponential distribution with parameter $\lambda > 0$ if it has a probability density function defined by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0 & otherwise \end{cases}$$
 (19)

The respective mean and variance of an Exponential distribution are respectively given as;

$$E(X) = \frac{1}{\lambda} \tag{20}$$

and

$$Var(X) = \frac{1}{\lambda^2} \tag{21}$$

To obtain the rate parameter (λ) of an exponential distribution, we have

$$E(X) = \mu = \frac{1}{\lambda} \Rightarrow \lambda = \frac{1}{\mu}$$
 (22)

Equations(22) was employed in the simulation of data for an exponential distribution in this study.

3.2.4 Beta Distribution

A standard beta distribution is a two-parameter family of distribution for a continuous random variable *Y* , defined in a finite interval on a real line with its density function given by

IJO - INTERNATIONAL JOURNAL

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/

 $\frac{\text{ttps://ijojournals.com/}}{\text{performance evaluation of Canonical Correlation analysis and redundancy analysisusing Gaussian, Gamma, exponential and beta distributed data}$

$$f(y) = \begin{cases} \frac{y^{\alpha-1} (1-y)^{\beta-1}}{B(\alpha, \beta)}, & 0 \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$
 (23)

where $\alpha, \beta > 0$ and $B(\alpha, \beta)$ is the beta function; its formula is given by

$$B(\alpha, \beta) = \int_{0}^{1} t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$
 (24)

The mean and variance of *Y* are

$$E(X) = \mu = \frac{\alpha}{\alpha + \beta} \tag{25}$$

and

$$Var(X) = \sigma^2 = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$$
(26)

The scale (β) and shape (α) parameters of a beta distribution are obtained as:

$$\alpha = \frac{-\mu(\sigma^2 + \mu^2 - \mu)}{\sigma^2} \tag{27}$$

and

$$\beta = \frac{(\sigma^2 + \mu^2 - \mu)(\mu - 1)}{\sigma^2}$$
 (28)

4 Results

4.1 Simulated Data of Different Sample Sizes for CCA and RDA

Data were simulated on R-Studio command window, calling for the CCA and RDA function for Gaussian distribution, Gamma distribution, Exponential distribution and Beta distribution for samples of sizes 10, 20, 30, 40, 50, 60 and 70. Three variates of the response variable (Y₁, Y₂, Y₃) and three variates of independent variables (X₁, X₂, X₃) were used for the simulation. The means used for response and independent variables for the Gaussian distribution were 80, 85 and 90, whereas their standard deviations were 10, 12 and 15. The alpha values used for response and independent variables for the Gamma distribution were 80, 85 and 90 whereas their theta values were 40, 43 and 45. The rates parameters used for response and independent variables for the Exponential distribution were 0.5. 0.7 and 0.9; whereas the shape parameters used for the Beta distribution were taking from values from 2 to 5 and the results obtained are summarized in Table 1.

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/ Performance evaluation of canonical correlation analysis and redundancy analysisusing Gaussian, Gamma, exponential and beta distributed data

Table 1: Summary Results from the Four Distributions for Different Sample Sizes

Sample	Distribution		Correlation	Eigen-value	X-Mean		Y-Mean Vector	
10		Sample						RDA
10								78.5301
Caussian	I	10						89.9215
SD = 0,2748		10						84.7729
Page					0,10,00	0,10,10	0 111,725	0 117,722
Caussian					81.5175	81.5175	76.8798	76.8798
Caussian		20						87.3907
SD = 0.1792 SD = 0.2855 SD = 0.4399 0.3159 82.1643 82.1643 80.9557 80.955 80.255 80.0318 0.0050 0.16238 91.6238 89.4687 89.4687 89.4687 80.0014 SD = 0.1614 SD		20						95.7642
Gaussian Gauss								
Gaussian Gauss					82 1643	82 1643	80 9557	80 9557
Gaussian		20						
SD = 0.2041 SD = 0.1614		30						
0.2583					71.0250	71.0250	07.1007	07.1007
March	Gaussian				80.8160	80.8160	78 6760	78 6760
Comman C		40						
SD = 0.1278 SD = 0.0737		40						89.0918
0.3583					, 0.5 117	, , , , , , , ,	07.0710	0,.0,10
Solution					78.4572	78.4572	79.9256	79.9256
$\textbf{Gamma} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		50						84.7669
SD = 0.1752 SD = 0.0397		30						92.1156
$\textbf{Gamma} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					0,10,10,	0,10101	721220	7=11110
Gamma					81.1089	81.1089	80.7678	80.7678
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		60						86.6178
SD = 0.158 SD = 0.0316								89.5820
10							0710000	0,1000
To 0.0973 0.0724 85.5524 85.5524 82.6863 82.686 0.0012 0.0082 91.8743 91.8743 90.5477 90.547 SD = 0.1071 SD = 0.0843					81 <i>4</i> 539	81 4539	81 7998	81 7998
Camma		70						
$ \textbf{Gamma} \\ \textbf{Gamma} \\ \textbf{BD} = \textbf{0.1071} & \textbf{SD} = \textbf{0.0843} \\ \textbf{0.8263} & 0.8768 & 3311.883 & 3311.883 & 3117.559 & 3117.5 \\ 0.4987 & 0.5569 & 3691.902 & 3691.902 & 3520.850 & 3520.8 \\ 0.2967 & 0.3712 & 3967.700 & 3967.700 & 4020.455 & 4020.4 \\ \textbf{SD} = \textbf{0.2673} & \textbf{SD} = \textbf{0.2558} \\ \textbf{0.3916} & 0.2781 & 3145.036 & 3145.036 & 3329.500 & 3329.5 \\ 0.1921 & 0.0870 & 3703.089 & 3703.089 & 3672.906 & 3672.9 \\ 0.0523 & 0.0022 & 4019.466 & 4019.466 & 4122.456 & 4122.4 \\ \textbf{SD} = \textbf{0.1705} & \textbf{SD} = \textbf{0.1413} \\ \textbf{0.5626} & 0.1461 & 3316.971 & 3316.971 & 3139.415 & 3139.4 \\ 0.03175 & 0.0736 & 3601.826 & 3601.826 & 3687.641 & 3687.6 \\ 0.0309 & 0.0065 & 4074.426 & 4074.426 & 4072.765 & 4072.7 \\ \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.0098} \\ \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.00491} & 3151.013 & 3151.013 & 3127.473 & 3127.4 \\ 0.0370 & 0.00491 & 3151.013 & 3151.013 & 3127.473 & 3127.4 \\ 0.0370 & 0.0014 & 4011.102 & 4011.102 & 4057.979 & 4057.9 \\ \textbf{SD} = \textbf{0.2080} & \textbf{SD} = \textbf{0.0243} \\ \textbf{SD} = \textbf{0.2080} & \textbf{SD} = \textbf{0.0243} \\ \textbf{0.02901} & 0.0077 & 3565.821 & 3565.821 & 3641.781 & 3641.7 \\ 0.0622 & 0.0005 & 4136.478 & 4136.478 & 4100.952 & 4100.9 \\ \textbf{SD} = \textbf{0.1435} & \textbf{SD} = \textbf{0.0971} \\ \textbf{0.0145} & 0.0121 & 3631.133 & 3631.133 & 3751.599 & 3751.5 \\ 0.0145 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ \hline \end{tabular}$								
10					71.0715	71.0713	70.5177	70.5177
$ \textbf{Gamma} = \begin{bmatrix} 0.4987 & 0.5569 & 3691.902 & 3691.902 & 3520.850 & 3520.8 \\ 0.2967 & 0.3712 & 3967.700 & 3967.700 & 4020.455 & 4020.4 \\ \textbf{SD} = \textbf{0.2673} & \textbf{SD} = \textbf{0.2558} & & & & & \\ 0.3916 & 0.2781 & 3145.036 & 3145.036 & 3329.500 & 3329.5 \\ 0.1921 & 0.0870 & 3703.089 & 3703.089 & 3672.906 & 3672.90 \\ 0.0523 & 0.0022 & 4019.466 & 4019.466 & 4122.456 & 4122.4 \\ \textbf{SD} = \textbf{0.1705} & \textbf{SD} = \textbf{0.1413} & & & & \\ 0.3090 & 0.0652 & 4074.426 & 4074.426 & 4072.765 & 4072.7 \\ \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.0698} & & & & \\ 0.0309 & 0.0065 & 4074.426 & 4074.426 & 4072.765 & 4072.7 \\ \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.0698} & & & & \\ 0.0370 & 0.0014 & 4011.102 & 4011.102 & 4057.979 & 4057.9 \\ \textbf{SD} = \textbf{0.2080} & \textbf{SD} = \textbf{0.0243} & & & \\ 0.02016 & 0.0077 & 3565.821 & 3565.821 & 3641.781 & 3641.7 \\ 0.0622 & 0.0005 & 4136.478 & 4136.478 & 4100.952 & 4100.9 \\ \textbf{SD} = \textbf{0.1435} & \textbf{SD} = \textbf{0.0971} & & & \\ 0.2258 & 0.0436 & 3158.815 & 3158.815 & 3195.705 & 3195.7 \\ 0.0145 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ \hline \end{tabular}$					2211 992	2211 002	2117 550	2117 550
$ \textbf{Gamma} = \begin{bmatrix} 0.2967 & 0.3712 & 3967.700 & 3967.700 & 4020.455 & 4020.455 \\ \textbf{SD} = \textbf{0.2673} & \textbf{SD} = \textbf{0.2558} \\ 0.3916 & 0.2781 & 3145.036 & 3145.036 & 3329.500 & 3329.50 \\ 0.1921 & 0.0870 & 3703.089 & 3703.089 & 3672.906 & 3672.90 \\ 0.0523 & 0.0022 & 4019.466 & 4019.466 & 4122.456 & 4122.45 \\ \textbf{SD} = \textbf{0.1705} & \textbf{SD} = \textbf{0.1413} \\ 0.5626 & 0.1461 & 3316.971 & 3316.971 & 3139.415 & 3139.4 \\ 0.0309 & 0.0065 & 4074.426 & 4074.426 & 4072.765 & 4072.7 \\ \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.0698} \\ 0.4502 & 0.0491 & 3151.013 & 3151.013 & 3127.473 & 3127.4 \\ 0.2016 & 0.0176 & 3618.440 & 3618.440 & 3702.444 & 3702.4 \\ 0.0370 & 0.0014 & 4011.102 & 4011.102 & 4057.979 & 4057.9 \\ \textbf{SD} = \textbf{0.2080} & \textbf{SD} = \textbf{0.0243} \\ 0.2901 & 0.0077 & 3565.821 & 3565.821 & 3641.781 & 3641.7 \\ 0.0622 & 0.0005 & 4136.478 & 4136.478 & 4100.952 & 4100.9 \\ \textbf{SD} = \textbf{0.1435} & \textbf{SD} = \textbf{0.0971} \\ 0.2258 & 0.0436 & 3158.815 & 3158.815 & 3195.705 & 3195.7 \\ 0.0145 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.59 & 0.001.5 & 4115.701 & 4101.579 & 4001.559 & 4001.5 \\ 0.001.59 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.59 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.59 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.59 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.59 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001.5 & 0.0001 & 4115.701 & 4115.701 & 4105.591 & 4001.5 \\ 0.001.50 & 0.001.5 & 0.0001.5 & 0.0$		1.0						
$ \textbf{Gamma} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		10						
Gamma 0.3916 0.1921 0.0870 0.0870 0.0870 0.0523 0.0022 4019.466 4019.466 4122.456 4122.45 4122.45 0.0523 0.0022 4019.466 4019.466 4122.456 4122.45 0.0523 0.0022 4019.466 4019.466 4122.456 4122.45 0.0523 0.0022 4019.466 4019.466 4122.456 4122.45 0.0526 0.1461 0.0526 0.0526 0.0461 0.0736 0.0					3907.700	3907.700	4020.433	4020.433
$ \textbf{Gamma} = \begin{bmatrix} 0 & 0.1921 & 0.0870 & 3703.089 & 3703.089 & 3672.906 & 3672.906 \\ 0.0523 & 0.0022 & 4019.466 & 4019.466 & 4122.456 & 4122.456 \\ \textbf{SD} = \textbf{0.1705} & \textbf{SD} = \textbf{0.1413} & & & & & & \\ 0.5626 & 0.1461 & 3316.971 & 3316.971 & 3139.415 & 3139.4 \\ 0.03175 & 0.0736 & 3601.826 & 3601.826 & 3687.641 & 3687.6 \\ 0.0309 & 0.0065 & 4074.426 & 4074.426 & 4072.765 & 4072.7 \\ \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.0698} & & & & & & \\ 0.4502 & 0.0491 & 3151.013 & 3151.013 & 3127.473 & 3127.4 \\ 0.2016 & 0.0176 & 3618.440 & 3618.440 & 3702.444 & 3702.4 \\ 0.0370 & 0.0014 & 4011.102 & 4011.102 & 4057.979 & 4057.99 \\ \textbf{SD} = \textbf{0.2080} & \textbf{SD} = \textbf{0.0243} & & & & & \\ 0.3273 & 0.1721 & 3288.111 & 3288.111 & 3169.010 & 3169.0 \\ 0.2901 & 0.0077 & 3565.821 & 3565.821 & 3641.781 & 3641.7 \\ 0.0622 & 0.0005 & 4136.478 & 4136.478 & 4100.952 & 4100.9 \\ \textbf{SD} = \textbf{0.1435} & \textbf{SD} = \textbf{0.0971} & & & & & \\ 0.2258 & 0.0436 & 3158.815 & 3158.815 & 3195.705 & 3195.7 \\ 0.0145 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ \hline \end{tabular}$					31/15 036	31/15 036	3329 500	3329 500
$ \textbf{Gamma} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		20						
		20						4122.456
Gamma $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1017.100	1017.100	1122.130	1122.130
Gamma 30					3316 971	3316 971	3139 415	3139.415
Gamma $ \begin{array}{ c c c c c c c c c } \hline \textbf{Gamma} & 0.0309 & 0.0065 & 4074.426 & 4074.426 & 4072.765 & 4072.7 \\ \hline \textbf{SD} = \textbf{0.2661} & \textbf{SD} = \textbf{0.0698} & & & & & & \\ \hline 0.4502 & 0.0491 & 3151.013 & 3151.013 & 3127.473 & 3127.4 \\ \hline 0.2016 & 0.0176 & 3618.440 & 3618.440 & 3702.444 & 3702.4 \\ \hline 0.0370 & 0.0014 & 4011.102 & 4011.102 & 4057.979 & 4057.9 \\ \hline \textbf{SD} = \textbf{0.2080} & \textbf{SD} = \textbf{0.0243} & & & & \\ \hline 0.3273 & 0.1721 & 3288.111 & 3288.111 & 3169.010 & 3169.0 \\ \hline 0.2901 & 0.0077 & 3565.821 & 3565.821 & 3641.781 & 3641.7 \\ \hline 0.0622 & 0.0005 & 4136.478 & 4136.478 & 4100.952 & 4100.9 \\ \hline \textbf{SD} = \textbf{0.1435} & \textbf{SD} = \textbf{0.0971} & & & & \\ \hline 0.2258 & 0.0436 & 3158.815 & 3158.815 & 3195.705 & 3195.7 \\ \hline 0.01697 & 0.0121 & 3631.133 & 3631.133 & 3751.599 & 3751.5 \\ \hline 0.0145 & 0.0001 & 4115.701 & 4115.701 & 4001.559 & 4001.5 \\ \hline \end{array}$		20						3687.641
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30						4072.765
Gamma 0.4502 0.0491 3151.013 3151.013 3127.473 3127.4 0.2016 0.0176 3618.440 3618.440 3702.444 3702.44					20	13720	10.2.,00	10.2.700
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gamma				3151.013	3151.013	3127.473	3127.473
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40						3702.444
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40						4057.979
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50			3288.111	3288.111	3169.010	3169.010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								3641.781
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$] 30	0.0622	0.0005				4100.952
0.2258 0.0436 3158.815 3158.815 3195.705 3195.7 0.1697 0.0121 3631.133 3631.133 3751.599 3751.5 0.0145 0.0001 4115.701 4115.701 4001.559 4001.5								
60 0.1697 0.0121 3631.133 3631.133 3751.599 3751.5 0.0145 0.0001 4115.701 4115.701 4001.559 4001.5					3158.815	3158.815	3195.705	3195.705
0.0145 0.0001 4115.701 4115.701 4001.559 4001.5		60						3751.599
								4001.559
SD 0:1076 SD 0:0226			SD = 0.1095	SD = 0.0225				

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/ Performance evaluation of canonical correlation analysis and redundancy analysisusing Gaussian, Gamma, exponential and beta distributed data

PERFORMANCE EVA	LUATION OF CANONI	CAL CORRELATION ANALYSIS A		USING GAUSSIAN, GAMMA	A, EXPONENTIAL AND BE	ETA DISTRIBUTED DATA	
		0.2659	0.2709	3211.757	3211.757	3239.607	3239.607
	70	0.2170	0.1029	3666.475	3666.475	3686.072	3686.072
	/0	0.1373	0.0066	4075.567	4075.567	3998.146	3998.146
		SD = 0.0649	SD = 0.1338				
		0.4361	0.8230	1.1191	1.1191	2.4481	2.4481
	10	0.3081	0.0420	2.8346	2.8346	1.5564	1.5564
	10	0.1447	0.0237	0.8268	0.8268	1.1561	1.1561
			+	0.8208	0.8208	1.1301	1.1301
		SD = 0.1461	SD = 0.4563	2.2650	2.2650	1.0106	1.0106
		0.4120	0.3147	2.2670	2.2670	1.9106	1.9106
	20	0.3517	0.1538	1.3586	1.3586	1.6637	1.6637
		0.0190	0.0013	1.6114	1.6114	1.1930	1.1930
		SD = 0.2117	SD = 0.1567				
		0.4655	0.2104	1.5786	1.5786	1.5809	1.5809
	30	0.2066	0.0256	1.2137	1.2137	1.1047	1.1047
	30	0.0284	0.0042	0.8006	0.8006	0.7525	0.7525
		SD = 0.2198	SD = 0.1134	0.0000	0.0000	0.7020	0.7626
		0.4752	0.0573	1.4892	1.4892	1.8839	1.8839
Evnonontial	4.0		+			1.4824	
Exponential	40	0.2934	0.0276	1.2863	1.2863		1.4824
		0.1192	0.0041	0.9426	0.9426	1.0180	1.0180
		SD = 0.1780	SD = 0.0267				
		0.2732	0.2847	2.0737	2.0737	2.3757	2.3757
	50	0.2422	0.1221	1.5447	1.5447	1.5730	1.5730
		0.0173	0.0188	0.9702	0.9702	1.0287	1.0287
		SD = 0.1397	SD = 0.1340				
		0.3197	0.1642	2.0932	2.0932	1.6467	1.6467
	60	0.2416	0.0383	1.4325	1.4325	1.6291	1.6291
		0.1147	0.0150	1.0182	1.0182	1.1243	1.1243
		SD = 0.1035	SD = 0.0803	1.0102	1.0102	1.1213	1.12 13
	70	0.3419	0.0333	1.8292	1.8292	1.9513	1.9513
			+				
		0.2172	0.0152	1.2600	1.2600	1.2107	1.2107
		0.0537	0.0081	0.9883	0.9883	0.9481	0.9481
		SD = 0.1445	SD = 0.0130				
		0.7963	0.2434	0.2932	0.2932	0.2610	0.2610
	10	0.4646	0.0627	0.4356	0.4356	0.3669	0.3669
		0.0710	0.0031	0.6326	0.6326	0.5026	0.5026
		SD = 0.3631	SD = 0.1251				
		0.5851	0.5324	0.3218	0.3218	0.2944	0.2944
	20	0.5173	0.1768	0.4216	0.4216	0.4652	0.4652
	20	0.3069	0.0034	0.6327	0.6327	0.5084	0.5084
		SD = 0.1451	SD = 0.2697	0.0527	0.0027	0.200.	0.000.
		0.4148	0.3035	0.3263	0.3263	0.2616	0.2616
	30	0.1741	0.0262	0.3203	0.3203	0.4344	0.4344
		0.0256	0.0080	0.5727	0.5727	0.5483	0.5483
Doto		SD = 0.1964	SD = 0.1656				
Beta		0.4796	0.1522	0.3285	0.3285	0.2641	0.2641
	40	0.1904	0.0629	0.4468	0.4468	0.4209	0.4209
		0.1156	0.0511	0.6191	0.6191	0.6008	0.6008
		SD = 0.1922	SD = 0.0553				
		0.5701	0.0681	0.2805	0.2805	0.2751	0.2751
	50	0.2277	0.0133	0.4535	0.4535	0.4555	0.4555
] 30	0.0613	0.0001	0.6037	0.6037	0.5730	0.5730
		SD = 0.2594	SD = 0.0361		,,	3.5,50	,50
		0.5456	0.1719	0.2424	0.2424	0.2994	0.2994
	60	0.2209	0.0387	0.4367	0.4367	0.4373	0.4373
	60						
		0.1515	0.0067	0.5737	0.5737	0.5745	0.5745
		SD = 0.2104	SD = 0.0876				
		0.2990	0.0806	0.2953	0.2953	0.3030	0.3030
		0.0762	0.0192	0.4589	0.4589	0.4352	0.4352

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/

Volume 07 || Issue 08 || August, 2024 ||

			SD = 0.1360	SD = 0.0420						
		70	0.0525	0.0003	0.6028	0.6028	0.5580	0.5580		
_	PERFORMANCE EVALUATION OF CANONICAL CORRELATION ANALYSIS AND REDUNDANCY ANALYSISUSING GAUSSIAN, GAMMA, EXPONENTIAL AND BETA DISTRIBUTED DATA									

Table 1 shows the standard deviation of the correlations and eigenvalues for CCA and RDA respectively. It can be observed that the standard deviation of the RDA is lower than that of CCA except for the cases of sample sizes 10 and 20 for Gaussian distribution; sample size 70 for Gamma distribution, sample size 10 for Exponential distribution and sample size 20 for Beta distribution, but there is need to examine if the differences are significant. It is also observed that the X and Y-variates of the CCA and RDA do not differ.

4.2 Model Performance Adequacy of CCA and RDA Techniques

Table 2: Summary of Decision for Testing SD Values for CCA and RDA

		SD Values		Ranks		Z	p-value	Decision	
Distribution	Sample	CCA	RDA	CCA	RDA				
	10	0.2748	0.3616	12	14				
	20	0.1792	0.2855	10	13	1			
Gaussian	30	0.2041	0.1614	11	8			Do not Reject H ₀	
	40	0.1278	0.0737	6	3	0.958	0.338		
	50	0.1752	0.0397	9	2	1			
	60	0.158	0.0316	7	1	1			
	70	0.1071	0.0843	5	4	1			
	10	0.2673	0.2558	14	12				
	20	0.1705	0.1413	10	8	1	0.085	Do not Reject H ₀	
	30	0.2661	0.0698	13	4	1			
Gamma	40	0.2080	0.0243	11	2	1.725			
	50	0.1435	0.0971	9	5				
	60	0.1095	0.0225	6	1				
	70	0.0649	0.1338	3	7	1			
	10	0.1461	0.4563	9	14				
	20	0.2117	0.1567	12	10	1			
Exponential	30	0.2198	0.1134	13	5	1	0.142	Do not Reject H ₀	
-	40	0.1780	0.0267	11	2	1.469			
	50	0.1397	0.1340	7	6	1			
	60	0.1035	0.0803	4	3				
	70	0.1445	0.0130	8	1				
	10	0.3631	0.1251	14	5				
	20	0.1451	0.2697	7	13		0.035	Reject H ₀	
Beta	30	0.1964	0.1656	10	8				
	40	0.1922	0.0553	9	3	2.108			
	50	0.2594	0.0361	12	1				
	60	0.2104	0.0876	11	4				
	70	0.1360	0.0420	6	2	7			

Table 2 shows the Wilcoxon rank sum testsignificance difference result for the four continuous distributions employed in this study. The result reveals that there is no significant difference in

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

the standard deviation of the correlations and eigenvalues for the methods for Gaussian, Gamma and Exponential distributions. This implies that the relative efficiency of the CCA and RDA is the same for the Gaussian, Gamma and Exponential distributed data. On the other hand, the result reveals thatthere is significant difference in the standard deviation of the correlations and eigenvalues for the methods for Beta distribution. This implies that RDA is more efficient than that of CCA for the Beta distributed data.

4 Conclusion

This study used canonical correlation and redundancy analysis via four continuous distributions (Gaussian, Gamma, Exponential and Beta) in order to assess their performances. The adequacy of the CCA and RDA was evaluated with Wilcoxon rank sum test; and the study concluded thatRDA is more efficient than that of CCA for the Beta distributed data, while for Gaussian, Gamma and Exponential distributed data, the relative efficiency of the CCA and RDA is the same. The study also concluded that the X-variates of the CCA and RDA do not differ.

References

- El-Morshedy, M., Alshammari, F.S., Hamed, Y. S., Eliwa, M.S. & Yousof, H.M. (2021). A New Family of Continuous Probability Distributions. *Entropy*, 23(194), 1–24.
- García-Valdés, R., Sánchez, A. M., Fernández-Palacios, J. M., Padrón, R. P., & Rodríguez-Rodríguez, M. A. (2020). Climate change impacts on species distribution: A Redundancy Analysis approach. Ecography, 43(1), 141-152.
- Góreck, T., Krzysko, M. & Wołynski, W. (2020). Generalized canonical correlation analysis for functional data. *Biometrical Letters*, 57(2020), 1-12.
- Gua, F., Yungb, Y., Cheungc, M. W. L., Jood, B. K. & Nimon, K. (2023). Statistical inference in redundancy analysis: a direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5), 877–893.
- Hui, F. K. C., &Warton, D. I. (2022). Redundancy analysis and related methods for multivariate ecological data. Methods in Ecology and Evolution, 13(1), 15-28. doi: 10.1111/2041-210X.13734
- Li, M., Xu, X., & Chen, J. (2020). Integrative analysis of gene expression and disease outcomes using canonical correlation analysis. *Bioinformatics*, 36(10), 2911-2918.
- Makino, N. (2022). Rotation in correspondence analysis from the canonical correlation perspective. Psychometrika, 5(2022), 18–28.
- McKeague, I. W. & Zhang, X. (2021). Significance testing for canonical correlation analysis in high dimensions. Biometrika, 2021.
- Nayir, F. & Saridas, G. (2022). The relationship between culturally responsive teacher roles and innovative work behavior: canonical correlation analysis. Journal of Educational *Research and Practice*, 12(2022), 36 –50.
- Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2), 142-160.

(ISSN: 2992-4421)

Osuagwu, Chidimma Udo.*

https://ijojournals.com/

Volume 07 || Issue 08 || August, 2024 || PERFORMANCE EVALUATION OF CANONICAL CORRELATION ANALYSIS AND REDUNDANCY ANALYSISUSING GAUSSIAN, GAMMA, EXPONENTIAL AND BETA DISTRIBUTED DATA

- Ramette, A. (2017). Multivariate analyses in microbial ecology: A decade of progress. FEMS Microbiology Ecology, 93(12), fix106.doi: 10.1093/femsec/fix106
- Sumair, M., Aized, T., Gardezi, S.A.R., Bhutta, M.M.A., Rehman, S.M.S. &Rehman, S.U. (2021). Application of five continuous distributions and evaluation of wind potential at five stations using normal distribution. Energy Exploration & Exploitation, 39(6), 2214– 2239.
- Székely, E., Botta-Dukát, Z., & Lengyel, A. (2020). Redundancy analysis as a tool for identifying drivers of community composition in vegetation ecology. Journal of Vegetation Science, 31(3), 537-546. doi: 10.1111/jvs.12854
- Van de Velden. M. (2011).On generalized canonical correlation analysis.Proc.58th World Statistical Congress. Dublin, 758–765.
- Wang, H., Zhang, Y., & Singh, R. (2022). Climate-crop yield relationships: a canonical correlation analysis. Agricultural and Forest Meteorology, 313, 108702.
- Wang, Y., & Liu, X. (2022). Canonical correlation analysis for identifying relationships between climate variables and crop yields. Journal of Agricultural Science, 160(3), 257-265.