IJO - International Journal of Mathematics (ISSN: 2992-4421 )
https://ijojournals.com/index.php/m
<p><strong>IJO Journal of Mathematics</strong> is an international journal devoted to research concerning all aspects of mathematics. The Journal’s policy is to motivate authors to publish research papers that represent significant contributions, and which are of broad interests to the fields of pure and applied mathematics. <strong>IJO Journal of Mathematics </strong>journal which publishes research articles, reviews, case studies, guest edited thematic issues and short communications/letters in all areas of mathematics, applied mathematics, applied commutative algebra and algebraic geometry, mathematical biology, physics and engineering, theoretical bioinformatics, experimental mathematics etc. </p>IJO JOURNALSen-USIJO - International Journal of Mathematics (ISSN: 2992-4421 )<p>Author(s) and co-author(s) jointly and severally represent and warrant that the Article is original with the author(s) and does not infringe any copyright or violate any other right of any third parties and that the Article has not been published elsewhere. Author(s) agree to the terms that the <strong>IJO Journal</strong> will have the full right to remove the published article on any misconduct found in the published article.</p>THE POLYNOMIALS [ n.. Knots–FIGURES ] EDGE - POINTS VIBRATION & M-GEOMETRY
https://ijojournals.com/index.php/m/article/view/1112
<p><span class="fontstyle0">The Interactions </span><span class="fontstyle2">:<br>One of the most important concept in Geometry is , </span><span class="fontstyle3">distance </span><span class="fontstyle2">, which is the Quanta in Egeometry , while in Material-Geometry the composition of Opposite , where the </span><span class="fontstyle3">Material -<br>Point </span><span class="fontstyle2">is the Quanta in </span><span class="fontstyle0">Chemistry </span><span class="fontstyle2">and </span><span class="fontstyle0">Physics . </span><span class="fontstyle3">As in Algebra </span><span class="fontstyle2">Zero ,0, is the </span><span class="fontstyle3">Master-key<br></span><span class="fontstyle2">number for all Positive and Negative numbers and this because their sum and multiplication<br>becomes zero, </span><span class="fontstyle4">and the same </span><span class="fontstyle2">on any coordinate-System where ± axes pass from zero . In PNS<br>Space , </span><span class="fontstyle3">The </span><span class="fontstyle2">Rolling of the Positive </span><span class="fontstyle5">⊕ </span><span class="fontstyle2">constituent on the Negative </span><span class="fontstyle5">⊝ </span><span class="fontstyle2">constituent , creates<br>the Neutral Material Point which Equilibrium </span><span class="fontstyle0">. </span><span class="fontstyle2">Angular-Momentum is identical with </span><span class="fontstyle3">Spin </span><span class="fontstyle2">and<br>consists the </span><span class="fontstyle3">First-Discrete-Energy-Monad </span><span class="fontstyle2">which occupies , </span><span class="fontstyle3">Discrete Value and Direction </span><span class="fontstyle2">,<br>in contradiction to the Point which is Nothing , </span><span class="fontstyle4">Dimensionless </span><span class="fontstyle2">and </span><span class="fontstyle4">without any Direction </span><span class="fontstyle3">.<br>Quaternions </span><span class="fontstyle2">[(+)</span><span class="fontstyle5">↻↺</span><span class="fontstyle2">(-)] ≡ Box </span><span class="fontstyle5">???? </span><span class="fontstyle5">???? =???????? </span><span class="fontstyle2">carries the Principal stress </span><span class="fontstyle5">???? </span><span class="fontstyle5">???? </span><span class="fontstyle2">, </span><span class="fontstyle5">???? </span><span class="fontstyle5">???? </span><span class="fontstyle2">between Points<br>A(+) , B(-) which σ , as </span><span class="fontstyle3">Centripetal-acceleration </span><span class="fontstyle2">is the minimum Energy becoming from the<br>in-storage AB acceleration and is </span><span class="fontstyle0">equal to the </span><span class="fontstyle4">Gravity Force </span><span class="fontstyle0">g . </span><span class="fontstyle2">[108 – 110] . Because of the<br></span><span class="fontstyle4">Revolving and Periodic </span><span class="fontstyle2">acceleration of Gravity g ≡ </span><span class="fontstyle6"> </span><span class="fontstyle2">σ exists as the First Energy-Box-</span><span class="fontstyle5">???? </span><span class="fontstyle5">???? </span><span class="fontstyle2">,<br>while in the Second Box </span><span class="fontstyle5">????</span><span class="fontstyle5">???? </span><span class="fontstyle2">is followed </span><span class="fontstyle3">the Local-Extreme-case </span><span class="fontstyle2">where Gravity g ≡ </span><span class="fontstyle6"> </span><span class="fontstyle2">σ ,<br>and is altered Locally by changing the Principal-stress </span><span class="fontstyle0">σ </span><span class="fontstyle2">with an Local-uniform-Pressure<br>→ </span><span class="fontstyle5">????</span><span class="fontstyle5">???? </span><span class="fontstyle2">≡ g k = g . [ Force/Area ] = G ← i.e. The minimum Local - Energy acceleration is the<br>known , </span><span class="fontstyle3">Universal Gravitational-constant </span><span class="fontstyle0">G </span><span class="fontstyle2">= g k = </span><span class="fontstyle5">????</span><span class="fontstyle5">???? </span><span class="fontstyle2">g = </span><span class="fontstyle5">????</span><span class="fontstyle5">???? </span><span class="fontstyle2">σ , such for </span><span class="fontstyle4">Macrocosm and<br>for Microcosm </span><span class="fontstyle2">, Obeying the Newton`s Laws of motion . G </span><span class="fontstyle5">⏊ </span><span class="fontstyle2">σ<br>This Energy in </span><span class="fontstyle0">Hydrogen-Cave </span><span class="fontstyle2">as </span><span class="fontstyle0">E-M , Conductor </span><span class="fontstyle2">≡ Edge Points Vibration ≡ </span><span class="fontstyle0">The Pin of<br>Atom → Plug Into their Sockets </span><span class="fontstyle2">, which are the </span><span class="fontstyle0">Orbit – Bracket–Hooks ≡ </span><span class="fontstyle2">The Hands of<br>Atoms </span><span class="fontstyle0">← i.e. The Atoms Plug with their Pins </span><span class="fontstyle2">into </span><span class="fontstyle0">the other Atoms-Drains = Holes </span><span class="fontstyle2">, and<br>so Bond and carry Informations </span><span class="fontstyle0">.</span></p> <p><span class="fontstyle0">This </span><span class="fontstyle2">Resonance frequency of </span><span class="fontstyle3">Hydrogen is Common to all Atoms </span><span class="fontstyle0">and to all Compounds in<br>this Cosmos . The Energy-Quaternion </span><span class="fontstyle4">w̅̅̅</span><span class="fontstyle0">, </span><span class="fontstyle4">B̅</span><span class="fontstyle0">, Monad-Magnitudes exist as DUAL- Nature for<br>Any { </span><span class="fontstyle4">⊕ </span><span class="fontstyle0">, </span><span class="fontstyle4">⊝ </span><span class="fontstyle0">}, { Position , Motion },{ </span><span class="fontstyle2">Universe </span><span class="fontstyle0">, </span><span class="fontstyle2">Black-Holes } </span><span class="fontstyle0">, { Gravity ,Antigravity} ,<br>{Action → . ← Reaction} , Edge Points Vibration creating Electric = [</span><span class="fontstyle4">⊕</span><span class="fontstyle0">] and Magnetic =<br>[</span><span class="fontstyle4">⊝</span><span class="fontstyle0">] Forces as [</span><span class="fontstyle4">⊕</span><span class="fontstyle0">↔</span><span class="fontstyle4">⊝</span><span class="fontstyle0">] ,The Light and others .The STPL- Line Conductors on the </span><span class="fontstyle2">[STPL]-<br>Mechanism </span><span class="fontstyle0">, are the </span><span class="fontstyle2">Physical-Rotors </span><span class="fontstyle0">for the Origination of the Cosmic –Particles which<br>transfer Informations as the Signals - Spectrum .[110]<br>From Mechanics-Physics , </span><span class="fontstyle3">all Systems Possessing Elasticity ≡ motion and Reaction to the<br>motion , </span><span class="fontstyle0">the called mass </span><span class="fontstyle3">, are capable of free vibration or vibration ≡ </span><span class="fontstyle2">Periodic - motion<br></span><span class="fontstyle3">taking Place in the Absence of External Excitation </span><span class="fontstyle0">.This Principle issues for Both Systems<br></span><span class="fontstyle2">Closed </span><span class="fontstyle0">{The Atoms Nucleus} </span><span class="fontstyle2">or Open </span><span class="fontstyle0">Systems {The Orbitals}. For instance , In order that<br>shifting of an </span><span class="fontstyle2">u-d-</span><span class="fontstyle0">Quarks from an </span><span class="fontstyle2">Anti-Proton </span><span class="fontstyle0">into a Proton , the Spin-Pair requires extra<br>input of Energy in (MeV) , so that would the </span><span class="fontstyle2">Proton Paired with a Neutron and be Stable</span><span class="fontstyle0">.<br>transfer Informations as the Signals . </span><span class="fontstyle2">Vibration in a cave </span><span class="fontstyle4">∆ </span><span class="fontstyle0">, </span><span class="fontstyle3">means the Wave Pattern </span><span class="fontstyle2">.<br>Cave–Spin-</span><span class="fontstyle4">????̅ </span><span class="fontstyle0">of PNS Space is </span><span class="fontstyle4">????̅ </span><span class="fontstyle2">= r m v </span><span class="fontstyle0">and is the first </span><span class="fontstyle2">Monad </span><span class="fontstyle0">occupying </span><span class="fontstyle2">4-Spaces , </span><span class="fontstyle0">i.e.<br>From Number </span><span class="fontstyle2">n </span><span class="fontstyle0">, of the Equilibrium number of masses </span><span class="fontstyle4">m </span><span class="fontstyle4">???? </span><span class="fontstyle0">in a System.<br></span><span class="fontstyle2">a.. </span><span class="fontstyle0">The </span><span class="fontstyle2">n - </span><span class="fontstyle0">Spaces of Monad </span><span class="fontstyle4">????̅ </span><span class="fontstyle0">are the Polygons </span><span class="fontstyle4">???? </span><span class="fontstyle4">???? </span><span class="fontstyle0">with n = 1 </span><span class="fontstyle4">≈ ∞ </span><span class="fontstyle0">Knots ,<br></span><span class="fontstyle2">b.. </span><span class="fontstyle0">The </span><span class="fontstyle2">n </span><span class="fontstyle0">Anti-Spaces of Monad - </span><span class="fontstyle4">????̅ </span><span class="fontstyle0">are the Polygons - </span><span class="fontstyle4">???? </span><span class="fontstyle4">???? </span><span class="fontstyle0">with </span><span class="fontstyle2">n </span><span class="fontstyle0">=1</span><span class="fontstyle4">≈ ∞ </span><span class="fontstyle0">Knots ,<br></span><span class="fontstyle2">c.. </span><span class="fontstyle0">Sub-Spaces of Monad ≡ </span><span class="fontstyle2">± </span><span class="fontstyle4">????=????-∞</span><span class="fontstyle4">√ ????̅ </span><span class="fontstyle0">are the Polygons with </span><span class="fontstyle2">n = 1 </span><span class="fontstyle4">≈ ∞ </span><span class="fontstyle2">Knots<br></span><span class="fontstyle0">All n-Regular Polygons End to equations of n-degree Segment , by finding a suitable value<br>of the Segment , x , That is we have in the general case to solve one or two equations of<br>the form : A .</span><span class="fontstyle4">R</span><span class="fontstyle4">0</span><span class="fontstyle0">. </span><span class="fontstyle4">x</span><span class="fontstyle4">n </span><span class="fontstyle0">- B .</span><span class="fontstyle4">R</span><span class="fontstyle4">2</span><span class="fontstyle0">. </span><span class="fontstyle4">x</span><span class="fontstyle4">n-2 </span><span class="fontstyle0">+ C .</span><span class="fontstyle4">R</span><span class="fontstyle4">n-6</span><span class="fontstyle0">. x³ – D .</span><span class="fontstyle4">R</span><span class="fontstyle4">n-4</span><span class="fontstyle0">. x² + E .</span><span class="fontstyle4">R</span><span class="fontstyle4">n-2</span><span class="fontstyle0">.</span><span class="fontstyle4">x</span><span class="fontstyle4">1</span><span class="fontstyle0">– F. </span><span class="fontstyle4">R</span><span class="fontstyle4">n</span><span class="fontstyle0">. </span><span class="fontstyle4">x</span><span class="fontstyle4">0 </span><span class="fontstyle0">= 0<br>for </span><span class="fontstyle2">The Even Polygons </span><span class="fontstyle0">, and<br>A .</span><span class="fontstyle4">R </span><span class="fontstyle4">2</span><span class="fontstyle0">. </span><span class="fontstyle4">x</span><span class="fontstyle4">n-2 </span><span class="fontstyle0">- B.</span><span class="fontstyle4">R</span><span class="fontstyle4">n-2</span><span class="fontstyle0">. </span><span class="fontstyle4">x</span><span class="fontstyle4">n-3 </span><span class="fontstyle0">+ C.</span><span class="fontstyle4">R</span><span class="fontstyle4">2(n-4)</span><span class="fontstyle0">. x³ -D.</span><span class="fontstyle4">R</span><span class="fontstyle4">2(n-3)</span><span class="fontstyle0">. x² +E.</span><span class="fontstyle4">R</span><span class="fontstyle4">2(n-2)</span><span class="fontstyle0">. </span><span class="fontstyle4">x</span><span class="fontstyle4">1</span><span class="fontstyle0">– F.</span><span class="fontstyle4">R</span><span class="fontstyle4">2(n-1)</span><span class="fontstyle0">.</span><span class="fontstyle4">x</span><span class="fontstyle4">0 </span><span class="fontstyle0">= 0<br>for </span><span class="fontstyle2">The Odd Polygons </span><span class="fontstyle0">, where A , B , C , D are constants .<br>The Presented Geometrical method is the solution of the above equation in the general case .<br>Because , the nth - degree - equations are → the Vertices (</span><span class="fontstyle2">n</span><span class="fontstyle0">) and the Sides (</span><span class="fontstyle4">????</span><span class="fontstyle4">????</span><span class="fontstyle2">= </span><span class="fontstyle4">????</span><span class="fontstyle4">????</span><span class="fontstyle0">) of the<br>n-Polygon in circle ← number , π , is their common Mould . [ 62 ] . The Natural Mechanism<br>Continuously Originates the Elementary Particles and Compounds , Atoms and Molecules<br>with the One Action from Opposite . Article [111] encloses many Paragraphs of [110] , in<br>order to Distinguish and Prove the Way of Energy and the Stresses- Paths in the Spaces .<br>For the Regular Polygons is given such the Geometrical Solution as well the Algebraic .<br>[106] = Programming the Atoms and Compounds , is </span><span class="fontstyle2">an Program </span><span class="fontstyle0">which solves the Problem<br>of the </span><span class="fontstyle2">n-Knots Figures </span><span class="fontstyle0">and gives the </span><span class="fontstyle2">Energy Spectrum </span><span class="fontstyle0">of any </span><span class="fontstyle2">Complex-Forced-Vector </span><span class="fontstyle0">.<br>Article [114] an Way of Deceptioning the Cells is prepared .</span></p>Markos Georgallides
##submission.copyrightStatement##
https://creativecommons.org/licenses/by-nc-nd/4.0/
2025-08-042025-08-0480801118